On the Impact of Cut-Through Links in Epidemic Broadcasting

Hiroyuki Ohsaki and Yasuhiro Yamasaki

Graduate School of Science and Technology Kwansei Gakuin University Japan

Jun 10, 2016

ADMNET 2016

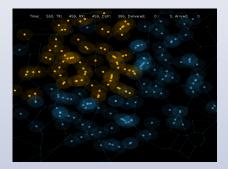
Outline

Introduction

Analytic Model

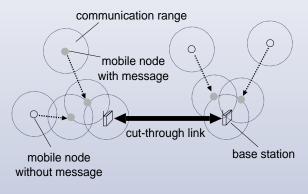
Analysis

Numerical Examples


Conclusion

Background

- DTN (Delay/Disruption-Tolerant Networking)
 - Realize end-to-end communication even when communication links in the network are not always functioning properly
 - Regarded as a promising technology for realizing communication infrastructure under disasters and/or extreme situations
- Research question
 - How cut-through links (i.e., small number of wired (stable) communication links) are effective in DTNs?

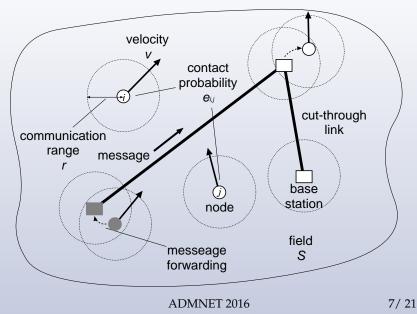

Epidemic Broadcasting

- Store-carry-and-forward communication for disseminating a message from a single source node to all other nodes
- P-BCAST (PUSH-based BroadCast)
 - The simplest epidemic broadcasting algorithm
 - Every node carrying a message always propagates to any encoutering nodes

Cut-Through Link

- A wired (i.e., stable) communication link connecting multiple points on the field
- Base stations are connected with cut-through links
- Messages can be forwarded among (distantly located) base stations

Research Objective


Existing works

 Simulation studies to investigate the effectiveness of cut-through links deployment for epidemic broadcasting

Our work

 Mathematically analyze the effect of cut-through links deployment for epidemic broadcasting

Analytic Model (1/2)

Analytic Model (2/2)

Message possession probability vector:

$$\pi(k)(={}^{t}(\pi_{1}(k),\ldots,\pi_{N}(k)))$$
(1)

Contact probability matrix:

$$E = (e_{i,j}) \tag{2}$$

Message diffusion dynamics with P-BCAST can be approximated as

$$\pi(k+1) = (\mathbf{I} + \mathbf{E}) \,\pi(k). \tag{3}$$

Assumptions

- ▶ The number *w* of cut-though links on the field
- w + 1 base stations are connected as a tree
- All cut-though links are sufficiently longer than the communication range r

Analysis (Case of Uniform Node Distribution) (1/2)

We assume that probability $p_i(x)$ that node $i (1 \le i \le N)$ exists at a point $\mathbf{x} \in S$ is uniform:

$$p_i(x) = p(x) = \frac{1}{|S|}$$
 (4)

The expected duration τ of an encouter among nodes *i* and *j* is given by

$$\tau = \frac{1}{2r} \left(2 \int_{-r}^{r} \sqrt{r^2 - x^2} dx \right) v^{-1}$$

= $\frac{\pi r}{2v}$. (5)

Analysis (Case of Uniform Node Distribution) (2/2)

Contact probability $e_{i,j}$ among nodes *i* and *j* at a slot is given by

$$e_{i,j} = \begin{cases} \frac{\pi r^2}{|S|} \tau^{-1} = \frac{2rv}{|S|} & i \neq j \\ 0 & \text{otherwise} \end{cases}$$
(6)

Virtual contact probability $e'_{i,j}$, which takes account of both direct and indirect encouters, is given by

$$e_{i,j}' = \begin{cases} e_{i,j} + (1 - e_{i,j})(\frac{\pi r^2}{|S|})^2 (w+1) w \tau^{-1} & i \neq j \\ 0 & \text{otherwise} \end{cases} .$$
(7)

Analysis (Case of Non-Uniform Node Distribution) (1/2)

We fouce on the case that the spatial distribution $p_i(\mathbf{x})$ of node *i* is given by an arbitrary function

Contact probability $e_{i,j}$ among nodes *i* and *j* at a slot is given by

$$e_{i,j} = \begin{cases} \tau^{-1} \int_{S} p_i(\mathbf{x}) \left(\int_{D(\mathbf{x},r)} p_j(\mathbf{y}) d\mathbf{y} \right) d\mathbf{x} & i \neq j \\ 0 & \text{otherwise} \end{cases}$$
(8)

where D(x, r) is the disc centered at point *x* with radius *r*

Analysis (Case of Non-Uniform Node Distribution) (2/2)

Indirect contact probability of nodes *i* and *j* through base stations *l* and $m (\neq l)$ is given by

$$\xi_{i,j}^{l,m} = \tau^{-1} \int_{D(\mathbf{z}_l,r)} p_i(\mathbf{x}) d\mathbf{x} \int_{D(\mathbf{z}_m,r)} p_j(\mathbf{x}) d\mathbf{x}$$
(9)

Thus, virtual contact probability $e'_{i,j}$ is given by

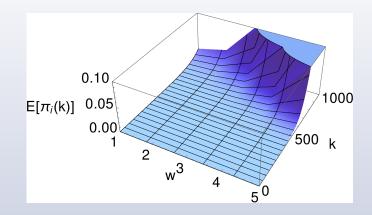
$$e_{i,j}' = \begin{cases} e_{i,j} + (1 - e_{i,j}) \sum_{1 \le l,m \le w+1, \ l \ne m} \xi_{i,j}^{l,m} & i \ne j \\ 0 & \text{otherwise} \end{cases}$$
(10)

Quantifying the Impact of Adding a Cut-Throung Link

- ► Introduction of an additional cut-through link (e.g., $w \rightarrow w + 1$) reduces the message delivery delay
- Increasing the wireless communication range *r* also reduces the message delivery delay

Question

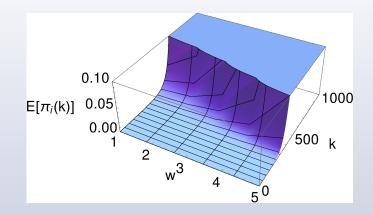
► How much increase in *r* is equivalent to an increment in *w*?


Solution

• Solve the following equation for Δr

$$e'_{i,j}|_{w \to w+1} = e'_{i,j}|_{r \to r+\Delta r} \tag{11}$$

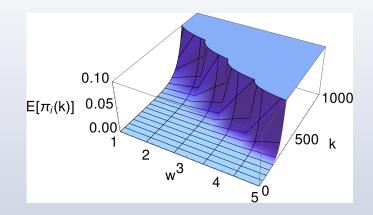
ADMNET 2016 13/21


Numerical Example (Dynamics of Message Possession Probability) (1/3)

 $N = 20, r = 50 \text{ [m]}, v = 4 \text{ [km/h]}, |S| = 250,000 \text{ [m^2]}$

ADMNET 2016

Numerical Example (Dynamics of Message Possession Probability) (2/3)

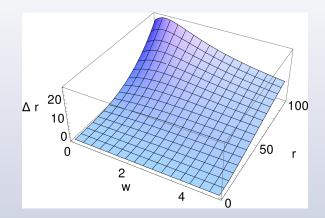


 $N = 40, r = 50 \text{ [m]}, v = 4 \text{ [km/h]}, |S| = 250,000 \text{ [m^2]}$

ADMNET 2016

15/21

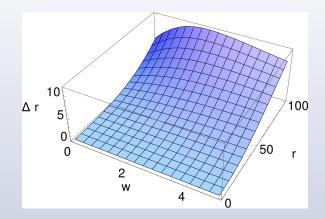
Numerical Example (Dynamics of Message Possession Probability) (3/3)



 $N = 20, r = 75 \text{ [m]}, v = 4 \text{ [km/h]}, |S| = 250,000 \text{ [m}^2\text{]}$

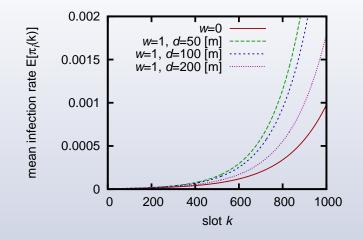
ADMNET 2016

16/21


Numerical Example (Impact of Additional Cut-Through Link) (1/2)

 $N = 20, v = 4 \text{ [km/h]}, |S| = 250,000 \text{ [m}^2\text{]}$

ADMNET 2016


Numerical Example (Impact of Additional Cut-Through Link) (2/2)

 $N = 20, v = 4 \text{ [km/h]}, |S| = 1,000,000 \text{ [m}^2\text{]}$

ADMNET 2016

Numerical Example (Case of Non-Uniform Node Distribution)

 $N = 20, r = 50 \text{ [m]}, v = 4 \text{ [km/h]}, |S| = 250,000 \text{ [m²]}, z_1 = (-d, 0), z_2 = (d, 0)$

ADMNET 2016

19/21

Conclusion

- Analyzed the message diffusion dynamics of epidemic broadcasting with cut-through links
- Quantitatively revealed the effect of deploying cut-through links on the performance (in particular, rapidity of message delivery)
 - Performance of epidemic broadcasting improves significantly...
 - by introducing a small number of cut-through links
 - by placing base stations appropriately according to the positional distribution of mobile nodes

Future Works

- Performance analysis of epidemic broadcasting algorithms other than P-BCAST
- Design a message routing mechanism utilzing cut-through links
- Design a buffer management mechanism of base stations