Modeling Restrained Epidemic Routing on Complex Networks

Natsuko Kawabata, Yasuhiro Yamasaki, and Hiroyuki Ohsaki

Kwansei Gakuin University, Japan

July 16, 2019

COMPSAC 2019

Outline

Introduction

Epidemic Routing

Analysis

Numerical Examples

Conclusion

Background: DTN Routing and Approaches for Realizing Efficiency Delivery

- DTN (Delay/Disruption Tolerant Networking) routing
 - Store-carry-and-forward message routing
 - Common performance metrics
 - Message delivery delay, delivery ratio, throughput
- Approaches for realizing efficient delivery
 - Increase the chance of delivery
 - Message replication
 - Message coding
 - Avoid congestion/resource starvation
 - (Utility-based) selection of relaying node
 - Message replication suppression with ACK
 - Data compression
 - Message expiration with TTL (Time-To-Live)

Background: Issues in Concurrent Message Transfer and Broadcasting ACK

Epidemic routing

- Disseminate message replicas through network
- A large number of message replicas generated
- When the amount of workload is **small**...
 - Can achieve near-optimal performance
- When the amount of workload is **large**...
 - May result in performance degradation due to many message replicas

Related Works: Modeling (Biological) Virus Dissemination (1/2)

- ► **Biological virus** dissemination modeling (1920's–)
 - Node states
 - SI (Susceptible Infected) model
 - ► SIS (Susceptible Infected Susceptible) model
 - SIR (Susceptible Infected Recovered/Revmoved) model
 - Contact among nodes
 - Fully-fixed (identical nodes, identical contact rates)
 - Graph (contact relationship graph)

Related Works: Modeling (Biological) Virus Dissemination (2/2)

- ► **Biological virus** dissemination modeling (1920's–)
 - Model state
 - Macro model: the number of nodes in every state (e.g., N_S, N_I)
 - Micro model: state of every node (e.g., s_1, \ldots, s_N)
 - Model description
 - Discrete (Markov chain): exact but for small systems
 - Continuous (differential equations): approximate but can be large-scale

Related Works: Epidemic Routing Modeling

- Mapping from virus epidemic to epidemic routing
 - What to be infected
 - Human being, animals
 - \rightarrow Nodes (terminals)
 - What infects
 - ▶ Biological (single) virus
 → (Multiple) messages
 - Recovery from infection
 - Natural recovery
 - \rightarrow Message discard by TTL or ACK
 - Objective
 - Virus elimination

 \rightarrow Rapid/reliable/low-cost message delivery

Related Works: Epidemic Routing Modeling

- Restrained epidemic routing
 - Objective: Fast message delivery under concurrent messages routing
 - Idea: Intentionally refrain message replication at a later stage
- Development of epidemic modeling on complex networks
 - ▶ Describe dynamics of all nodes
 → State space explosion
 - ► Homogeneous node assumption → Loss of graph structure
 - Describe dynamics of node classes
 - \rightarrow Reduction in state space
 - DBMF (Degree-Based Mean Field) approximation (2002)

Objective: Modeling Epidemic Routing in Complex Networks

- Describe the dynamics of restrained epidemic routing
- Using DBMF (Degree-Based Mean Field) approximation
 - Clarify the impact of node contact relationship (complex network) on message delivery

Restrained Epidemic Routing: Overview

Restrained Epidemic Routing: Comparison with Normal Epidemic Routing

Analytic Model: Message Delivery from Source Node to Destination Node

Analytic Model: Representing Node Contacts as Undirected Graph

COMPSAC 2019

Assumptions

- Restrained epidemic routing with broadcast ACK
- ► N nodes
- Message is generated at a source node at t = 0
- Contact duration follows Poisson distribution with mean λ
- ► Degree distribution of contact relationship: *P*(*k*)

Analytic Model: Mapping to SIR Model

COMPSAC 2019

Analysis: Initial State to Message Restraint

Initial state

$$\rho_k^I(0) = \begin{cases} \frac{1}{NP(k)} & k = d_s \\ 0 & \text{otherwise} \end{cases}$$

$$\rho_k^R(0) = 0$$

$$\rho_k^S(0) = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

Dynamics of the number of infected nodes in class k

$$\frac{d\rho_k^I(t)}{dt} = \lambda k \rho_k^S(t) \Gamma_k(t)$$
(4)
$$\Gamma_k(t) = \sum_{k'} P(k'|k) \rho_{k'}^I(t)$$
(5)

16/25

Analysis: Message Restraint to Message Delivery

 The number of infected nodes does not change until delivery completion

$$\frac{d\rho_k^I(t)}{dt} = 0 \tag{6}$$

$$\frac{d\rho_k^R(t)}{dt} = 0 \tag{7}$$

$$\frac{d\rho_k^S(t)}{dt} = 0 \tag{8}$$

From message restraint to message delivery

$$t_2 - t_1 = \frac{1}{\lambda \, d_r \, \Gamma_{d_r}(t_1)} \tag{9}$$

Analysis: Message Delivery to Broadcast ACK Dissemination

When message is delivered

$$\rho_k^I(t_2) = \rho_k^I(t_1) \tag{10}$$

$$\rho_k^R(t_2) = \begin{cases} \frac{1}{NP(d_r)} & k = d_r \\ 0 & \text{otherwise} \end{cases}$$
(11)

$$\rho_k^S(t_2) = 1 - \left(\rho_k^I(t_2) + \rho_k^R(t_2)\right)$$
(12)

Message replica reduction with broadcast ACK

$$\frac{d\rho_k^R(t)}{dt} = \lambda k \left(1 - \rho_k^R(t)\right) \Omega_k(t)$$
(13)

$$\Omega_k(t) = \sum_{k'} P(k'|k) \,\rho_{k'}^R(t) \tag{14}$$

Numerical Examples: Three Types of Degree Distributions

Poisson

$$P(k) = e^{-\bar{k}} \frac{\bar{k}^k}{k!} \quad (15)$$

Exponential

$$P(k) = (1 - e^{-\mu})e^{-\mu k}$$
(16)

Power-law

$$P(k) = \frac{k^{-\alpha}}{\zeta(\alpha)} \quad (17)$$

COMPSAC 2019

19/25

Numerical Example: Evolution of the Number of Message Replicas

1,000 nodes, degree distribution: Poisson, source and destination degree: 1, contact rate: 1/60

COMPSAC 2019

20/25

Numerical Examples: Effect of Contact Rate on Message Delivery

1,000 nodes, source and destination node degree: 1, contact rate: 1/60, p_T : 0.25

Numerical Examples: Effect of Contact Relationship on Message Delivery

1,000 nodes, source node degree: 10, destination node degree: 1, contact rate: 1/60, p_T : 0.25

COMPSAC 2019 22/25

Numerical Examples: Effect of Contact Relationship on Message Delivery

1,000 nodes, source node degree: 1, destination node degree: 10, contact rate: 1/60, p_T : 0.25

COMPSAC 2019 23/25

Conclusion

- Model restrained epidemic routing
 - Contact relationship is given by a complex network
 - Describe the dynamics of a single message routig
- Derive average message delivery delay and average message sojourn time
- Investigate the impact of contact relationship on message delivery
 - When contact relationship graph is power-law
 - Message delivery delay is larger than non-power-law cases

Future Works

- Derive exact solutions of average message delivery/sojourn times under specific degree distributions
- Modeling resource contention under multiple concurrent messages routing
- Designing a DTN routing mechanism utilizing our analysis