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1 Introduction

In large-scale communication networks consisting of
many end hosts and routers, accurate acquisition, measure-
ment, and estimation of communication delays between
node pairs are essential for providing high-quality commu-
nication services.

In several QoS-related performance metrics — metrics
for efficiency (throughput, communication delay/jitter, and
response time), metrics for availability, metrics for reliabil-
ity (loss rate and bit error rate) —, communication delay
is one of the key metrics to realize several traffic control
mechanisms.

Conventional instrumentation and measurement tech-
niques are suitable when the size of the network to be mea-
sured is relatively small, or when the number of node pairs
to be measured is relatively small. However, in evolving
and complex networks, it is not trivial to acquire, measure,
and estimate the communication quality at a huge number
of routers and end hosts.

In this paper, as an initial step toward the realization of
estimating communication quality (especially communica-
tion delays between node pairs) in a large-scale network, we
investigate the potential of graph neural networks [1] with
semi-supervised learning for estimating communication de-
lays between node pairs. The major difference between our
approach and that in [2] is in the type and the structure of
the neural network. Namely, we use graph convolutional
networks whereas authors of [2] use normal feed-forward
neural networks.

2 Problem Formulation

The communication delay estimation problem studied in
this paper is a problem of inferring communication delays
between one reference node and all other nodes in the net-
work only from measured communication delays at some
nodes.

We assume that the topology can be represented by undi-
rected graph G = (V, E) and that the topology is known.
However, it is assumed that information in the network
other than the topological structure (e.g., propagation delay
and bandwidth) are unknown.

We also assume that messages are routed in the network
based on a specific routing protocol but neither the details of
the routing protocol nor routing tables at routers are known.

The objective of this paper is to estimate communication
delays D, (v € V \ {s}) between the reference node s in the
network and node v.

Communication delays D, are observable at specific
nodes Vp C V (measurement nodes). Communication de-
lays D, at all other nodes Vy = V \ Vo U {s} are unknown,
which need to be estimated as accurately as possible.

The communication delay estimation problem is a min-
imization problem of errors in communication delays be-
tween the reference node and every unknown node. Thus,

for instance, using the mean absolute error as a cost func-
tion, the communication delay estimation problem can be
formulated as

_min E[|D, - D,|], (1)
D, veVy

where D, is the estimated communication delay from the
reference node to node v.

3 Communication Delay Estimation with Graph Con-
volutional Networks

Our neural network consists of three-layer GCNs coupled
with a rectified linear unit (ReLU) and the classifier at the
output layer with the logarithmic softmax function. The in-
puts to GCNs are node features (i.e., the reference node in-
dicator and the degree of the node) and the output from the
GCNs are communication delays from the reference node
to all other nodes.

Communication delays are numeric, so it is possible to
design a neural network for communication delay regres-
sion. However, in this paper, we classify communication
delays into one of the multiple classes according to the com-
munication delay so that GCNs are designed as a classifier
of communication delays.

4 Experiment

In this section, we investigate how accurately commu-
nication delays between the reference node and all other
nodes can be estimated using our GCN-based neural net-
work.

4.1 Case without Queuing Delays

First, we intentionally use a rather simple experiment
setup; graph G is an undirected and unweighted, and pro-
cessing delays and queuing delay at nodes are all zero.
Therefore, communication delays between the reference
node and other nodes are equivalent to the numbers of hops
between the reference node and other nodes.

For given network size N and density & (the average de-
gree), undirected and unweighted graph G is randomly gen-
erated using ER (Erdds-Rényi) model.

The single reference node is randomly chosen from all
nodes in graph G.

Paths from the reference node to all other nodes in graph
G is determined by the shortest-path routing. In our first ex-
periment, the estimated communication delay corresponds
to the number of hops, so the estimated communication de-
lay D, is equivalent to the shortest path length from the ref-
erence node to the node.

For given training set size ¢, a fraction ¢ of nodes Vo
are randomly chosen from all nodes excluding the reference
node.
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Figure. 1 Estimation accuracy of communication delays
(ER model, k = 3)

In all experiments, our GCNs were configured as fol-
lows: the number of features at intermediate GCN layers
is equally set to 10, all weight parameters of GCNs are
randomly initialized using the normal distribution with the
mean of 0.2 and the standard deviation of 0.01. All bias
parameters of GCNs are initialized to zero. We used the
Adam (adaptive moment estimation) algorithm to update
all weight and bias parameters of GCNs. The output from
our GCN is a classifier with D,,,, classes where D, is
the maximum communication delay (e.g., the number of
hops) in all observations (i.e., Dyay = maxyey\(sy Dy). For
given graph G and training set (i.e., a set of communica-
tion delays of measurement nodes), GCNs were trained for
at most 5,000 epochs. We used the negative log likelihood
loss as the loss function and the learning rate at each epoch
of 0.001.

The estimation accuracy is measured by the average rel-
ative error. The relative error Ey is defined as follows.
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For given network size N, we randomly generated 500
network instances. With those 500 network instances, we
measured the average relative error while changing a frac-
tion ¢ of measurement nodes. We calculated the mean and
the 95% confidence interval of the average relative error for
training set size ¢.

The average relative error for graphs generated with the
ER model is shown in Fig. 1. From these results, it is found
that the average relative error of estimated communication
delays (i.e., the number of hops) is around 10-35% depend-
ing on the fraction of the number of measurement nodes.
Also, it is found that communication delays for large-scale
networks (e.g., N = 500) can be estimated with a high ac-
curacy even if the fraction ¢ of the number of measurement
nodes is not so large.

4.2 Case with Queuing Delays

Next, we use a more realistic scenario than the previous
case; the network is composed of a large number of TCP
end hosts, RED (Random Early Detection) routers, and the
links with the finite bandwidth and the propagation delay,
whose topology is given by a random network generated by
the ER model.

Similarly to Section 4.1, for given network size N and the
density k, the network topology composed of RED routers
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Figure. 2 Estimation accuracy of communication delays
in the case of finite bandwidth (ER model, k = 3)

is randomly generated with the ER model.

The TCP sender is attached to the reference node, which
is randomly chosen from all RED routers in the network.
All other routers are attached with TCP receivers. The TCP
sender continuously transmits data to all TCP receivers; i.e.,
the network accommodates N — 1 persistent TCP flows from
the reference node to all other nodes. For simulating back-
ground traffic, 40 persistent TCP flows are randomly placed
in the network; i.e., 40 pairs of TCP sender and TCP re-
ceiver are randomly chosen from all RED routers in the net-
work to accommodate persistent TCP flows.

For training and verification, all communication delays
from the TCP sender to every TCP receiver are obtained
using a fluid-based network simulator FSIM (Fluid-based
SIMulator). The bandwidth and the propagation delay of
all links are set to 50 [packet/ms] and 1 [ms], respectively.
We used default values of FSIM for all other and TCP and
RED control parameters.

As an additional input feature to GCNs, we used the num-
ber of hops from the TCP sender to every TCP receiver.
Different from Section 4.1, for given network size N and
density k, 200 network instances are randomly generated
with the ER model.

Figure 2 shows the estimation accuracy of communica-
tion delays from TCP sender to TCP receivers. From these
results, it is found that our GCN-based neural network can
accurately estimate communication delays including queu-
ing delays from TCP sender to TCP receivers under the re-
alistic scenario. However, different from results in the case
without queuing delays in Section 4.1, the estimation ac-
curacy for a large-scale network (i.e., N = 500) does not
improve even though the training set size increases.
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