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Abstract A network topology is the logical structure of a communication network consisting of a large number of nodes (e.g.,
hosts and switches/routers) and links connecting among those nodes. Every communication network (e.g., Ethernet-based net-
works, TCP/IP networks, wireless networks, DTN (Delay/Disruption-Tolerant Networking), and ICN (Information-Centric
Networking)) has a different network topology, depending on the features and capabilities of nodes (e.g., the maximum num-
ber of ports/interfaces and the tolerance to a network loop) and links (e.g., unidirectional/bidirectional, wired/wireless, and
the maximum length) as well as several physical restrictions and usage patterns. Since a network topology is a sort of graphs,
in the literature, it has been actively studied from theoretical and mathematical viewpoints in the field of graph theory and
recently in the field of network science. In a communication network, not only the characteristics of the network topology
itself (e.g., size, density, degree distribution, diameter, and connectivity), but the characteristics of communications performed
on it (e.g., speed, quality, efficiency, availability, and reliability) are also important. This paper introduces four research topics
recently published by our research group, each of which reveals the impact of the network topology on the characteristics of a
dynamical process such as information search, delivery, and diffusion in a different context.
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1 Introduction

A network topology is the logical structure of a communica-
tion network consisting of a large number of nodes (e.g., hosts and
switches/routers) and links connecting among those nodes. In com-
munication networks, nodes and links are generally heterogeneous;
e.g., the processing speed and the buffer size of nodes are not iden-
tical, and the bandwidth and the transmission delay of links vary.
A network topology often focuses solely on the logical connections
among nodes.

Every communication network (e.g., Ethernet-based networks,
TCP/IP networks, wireless networks, DTN (Delay/Disruption-
Tolerant Networking), and ICN (Information-Centric Networking))
has a different network topology, depending on the features and ca-
pabilities of nodes (e.g., the maximum number of ports/interfaces
and the tolerance to a network loop) and links (e.g., unidirec-
tional/bidirectional, wired/wireless, and the maximum length) as
well as several physical restrictions and usage patterns.

A network topology is generally dynamic; e.g., nodes and links
are added/removed because of several reasons such as network ex-
pansion and device failure/replacement. By limiting the timescale
of the interest in network topology, it can be regarded as being static,
which simplifies mathematical modeling of the network topology as
a graph.

Since a network topology is a sort of graphs, in the literature, it
has been actively studied from theoretical and mathematical view-
points in the field of graph theory and recently in the field of net-
work science. Network science, which covers generally large-scale
and complex networks, has developed analysis techniques for com-
plex networks such as the scale-free property, the tail distribution of
node degrees, and the clustering coefficient.

In a communication network, not only the characteristics of the
network topology itself (e.g., size, density, degree distribution, di-
ameter, and connectivity), but the characteristics of communications
performed on it (e.g., speed, quality, efficiency, availability, and reli-
ability) are also important. A communication network itself consist-
ing of nodes and links is infrastructure, and traffic is transferred over
the network according to a specific communication protocol. Many
communication protocols adopt reactive (e.g., feedback-based) con-
trol mechanisms, and their operations dynamically change accord-
ing to the environment. Thus, it is crucial to understand how the
characteristics of a dynamical process are affected by the topology
of an underlying communication network.

This paper introduces four research topics [1-4] recently pub-
lished by our research group, each of which reveals the impact of
the network topology on the characteristics of a dynamical process
such as information search, delivery, and diffusion in a different
context (Tab. 1).

Section 2 addresses the impact of the network topology on the

performance of node discovery in an unknown network [1]. Node

discovery in an unknown network is a problem of finding a tar-
get node as quickly as possible by utilizing a mobile agent moving
around the network when the network topology is unknown to the
agent. This section presents the average discovery time (the average
first hitting time) when the mobility of the agent obeys either the
random walk or one of its variants through simulation experiments.

Section 3 discusses the impact of the underlying network topol-
ogy on message delivery in a geographic DTN routing, where
messages are transferred among fixed nodes relying on the store-
carry-and-forward capability of many mobile agents moving on the
field [2]. This section reveals how significantly the average message
delivery delay between fixed nodes is affected by the underlying
network topology.

Section 4 considers the robustness of a network topology against
random node removal [3]. This section discusses, when a fraction of
nodes are randomly removed from the network, how the size of the
largest cluster component (i.e., the size of the maximum connected
component) differs depending on the network topology.

Section 5 focuses on how the performance of epidemic-based
routing in DTN is affected by the network topology — in this case,
the contact relationships (i.e., the possibility of contacts between
mobile node pairs). This section examines the average message de-
livery delay in restrained epidemic routing — an extension to the
conventional epidemic routing — when the contact relationship be-

tween mobile nodes is given by a complex network.

2 First Hitting Time of Self-Avoiding/Biased
Random Walk on Graph

A wide range of problems in information networking and social
networking such as information search, retrieval, delivery, and dis-
semination can be modeled by one or more random walks of agents
on a graph. In the literature, studies on mobility models of one or
more agents such as discrete random walks on a graph and their
characteristics have been actively performed [5].

A random walk on a graph is a discrete process of an agent start-
ing from a source node and repeatedly performing transitions from
a currently-visiting node to a randomly-chosen neighbor node. Var-
ious properties of the random walk (e.g., sojourn probability of each
node in the steady state, the expected time elapsed since the agent
started its movement from the source node until it arrives at the des-
tination node at first (i.e., the first hitting time), and the expected
time until the mobile agent starting from a source node revisits the
source node (i.e., the recurrence time)) are clarified [6].

In the simple random walk, the agent has the quite limited capa-
bility; i.e., at any point, the agent only knows the list of neighbor
nodes of the currently-visiting node. Provision of different types
of agent’s capability enables several variants of the simple random
walk [7-12].

In this section, among different types of agent’s capability, we

particularly focus on memory (the capability of remembering the
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Table 1 Network topologies and dynamical processes in four research topics

Section network node link scale dynamical process objective
2 graph vertex edge small-large agent movement node discovery
3 field intersection  street/road large store-carry-and-forward message forwarding message delivery
4 computer network router communication link medium-large node removal maintaining connectivity
5 contacts relationship among agents  agent contact medium-large epidemic routing message delivery

history of visited nodes in the past) and local visibility (the capa-
bility of perceiving attributes of neighbors nodes of the currently-
visiting node).

An agent with memory can make the decision on the next transi-
tion based not only on the list of neighbor nodes of the currently-
visiting node but also on the record whether every neighbor node has
been visited in the past. An agent with local visibility can decide the
decision on the next transition based on attributes of neighbor nodes
of the currently-visiting node.

The agent with memory capability allows us to implement sev-
eral classes of random-walk-based mobility models such as self-
avoiding random walk and non-backtracking random walk [7-10].

Another approach for improving the efficiency of the simple ran-
dom walk on a graph is to allow the agent to chose the next node
to visit based on certain criteria. If the agent has local visibility,
the agent can preferentially choose the next node from all neigh-
bor nodes, which may improve the efficiency of the simple random
walk. Examples of random-walk-based mobility models with local
visibility include biased random walk [11, 12].

This section investigates how the agent’s capability (i.e., memory
and local visibility) may contribute to improving the efficiency of a
random walk on a graph —- in particular, the first hitting time (i.e.,
the expected time elapsed since the agent starts its random walk
from a source node until it arrives the destination node at first) —
through simulation experiments.

We compare the hitting time between a randomly-chosen node
pair of two random-walk-based mobility models (irreversible ran-
dom walk and biased random walk) on four types of networks (ER
(Erdds-Rényi) model, generalized BA (Barabdsi Albert) model, Li-
Chen model, and Voronoi diagram).

The simple random walk is the baseline in our experiments.
The impact of the amount of agent’s memory is examined through
the K-irreversible random walks, which is a generalization of the
non-backtracking random walk and the self-avoiding random walk,
and the DFS (Depth-First Search), which achieves the near-optimal
cover time. The impact of (existence of) local visibility is exam-
ined through the a-biased random walk [1] where the parameter «
controls the preference to high-degree neighbor nodes.

‘We used four types of synthetic networks generated with different
types of network generation models for random graphs, scale-free
graphs, and planar graphs. For a given network, we measured the
average of first hitting times between a randomly-chosen node pair.

The impact of the agent’s memory on the average first hitting time

average first htting time

memory size K

Figure | Relation between agent’s memory size K and average first hitting
time (N = 1,000, k£ = 4)
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Figure 2 Relation between bias parameter o and average first hitting time
(N =1000, k = 4)

on different types of networks with N = 1,000 (1,000 nodes) and
k = 4 (the average degree of 4) is shown in Fig. 1. This figure
clearly indicates that provision of a minimal amount of memory
(e.g., K = 1) significantly reduces the average first hitting time
regardless of the type of networks. On the contrary, this figure also
shows that further increasing the memory size does not contribute
to improving the efficiency of random-walk-based mobility models.
The benefit caused by the introduction of a agent’s memory is more
significant than that in /ess connected networks.

The average first hitting times on four types of networks for dif-
ferent settings of bias parameter « are plotted in Fig. 2. Different
from the impact of agent’s memory, the impact of agent’s local vis-
ibility is quite dependent on the type of networks; i.e., appropriate
utilization of local visibility (i.e., @ £ 0) accelerates network ex-
ploration in some networks (ER and BA), but, in other cases, the

average first hitting time is considerably increased.

3 Message Delivery Delay in Large-Scale Geo-
graphic DTN Routing

To the best of our knowledge, most of existing DTN routing al-
gorithms are designed for message delivery between mobile nodes
(i.e., message transmission from a mobile node to one or more other
mobile nodes) [13, 14]. However, in practical applications of DTNs

in several fields, endpoints of communication might not always be
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Figure 3 An overview of geographic DTN routing with mobile agents

mobile nodes. In other words, endpoints might also be fixed nodes,
so other types of communications between mobile and fixed nodes
and also between fixed nodes should be required. In this paper, a
class of DTN routing utilizing mobile nodes for store-carry-and-
forward communication among fixed nodes is called geographic
DTN routing.

A geographic DTN routing aims at realization of message de-
livery among multiple (generally, geographically-dispersed) ge-
ographic locations on a field without the necessity of specific
communication infrastructure by utilizing the mobility of mobile
agents. On the field, there exist multiple geographic locations (i.e.,
fixed nodes) and mobile agents (i.e., mobile nodes), and messages
are transferred among geographic locations using store-carry-and-
forward operations of mobile agents.

In this section, we address the research question: how is the per-
formance of geographic DTN routing affected by the topology of the
network (i.e., connections of many geographic locations)?

In what follows, a network means a network of geographic loca-
tions and the fopology means the topology of the network composed
of geographic locations and connections among them [2]. The per-
formance of geographic DTN routing should be affected by several
factors: a geographic DTN routing algorithm, a buffer management
mechanism of mobile agents, the capability (e.g., bandwidth and
BER (Bit Error Ratio)) of wireless communication among mobile
agents and geographic locations, the mobility of mobile agents, and
the topology of geographic locations. Among those, the first four
factors are controllable to some extent. For instance, the capability
of wireless communication among mobile agents and geographic lo-
cations can be changed by replacing communication protocols and
adjusting wireless device parameters. On the other hand, the last
two factors are generally uncontrollable. 1t is generally difficult or
impossible, for instance, to force mobile agents a specific mobil-
ity and/or to change the topology of geographic locations, which
usually requires replacement of geographic locations and/or recon-
struction of paths among geographic locations. Hence, it is quite
essential to understand the impact of the network topology on the
performance of geographic DTN routing.

In the literature, the impact of the network topology on conven-
tional DTN routing has been investigated [15]. These studies show
that the performance of conventional DTN routing is dependent on

the underlying network topology. Also, in the field of network sci-
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ence, the relation between the topological structure of a complex
graph and its dynamical properties such as the percolation, epi-
demics, and information dissemination has been extensively stud-
ied [16, 17]. These studies show that the network topology consid-
erably affects the dynamical properties such as probabilistic infor-
mation dissemination on a complex network. By taking account of
these findings, it is natural to assume that the performance of geo-
graphic DTN routing should be significantly affected by the network
topology since geographic DTN routing has similarity with conven-
tional DTN routing and dynamical processes on a complex network.
However, the impact of the network topology on geographic DTN
routing has not been well understood.

In what follows, we summarize numerical results and discussions
in [18]. Refer to [18] for details.

For a given network size N (= |V|) (i.e., the number of geo-
graphic locations), a network topology is synthetically generated
using ER (Erdos-Rényi) model [19]. The average degree (i.e., the
average number of paths connected to a geographic location) k is
fixed at k = 6.

Figure 4 shows the average message delivery delay D,, ,, for dif-
ferent network sizes N. In this figure, the number C' of message
replicas is changed to 1, 50, or 100. Note that results with C' = 50
and C' = 100 (blue and green lines) are almost indistinguishable.

Figure 5 shows the average message delivery delay D, ., as a
function of the number C' of message replicas. In this figure, the
load factor [18] is set to a« = 0.9 to simulate highly loaded con-
ditions. This figure clearly illustrates that the average message de-
livery delay D, is a concave function. The optimal number of
message replicas is around C' = 20, but it is almost independent of

the network size NN in this case.
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Figure 6 An example of random node removal

The research question presented above can be rephrased as fol-
lows: how the average message delivery delay D.,, in Fig. 4 is
changed if the average degree is different (i.e., k F 6) and if the
degree distribution of graph G is not binomial (e.g., power-law dis-
tribution as in scale-free networks). Except for highly loaded condi-
tions, the dominant factor of the replica delivery delay is the transfer
delay rather than the queueing delay [18]. As Eq. (12) in [18] im-
plies, the transfer delay is mostly determined by the average hitting
time H,,,, which is then determined solely by the ratio of the num-
ber | E| of edges to the degree v of the destination node v. Namely,
in geographic DTN routing under random walk mobility, the net-
work topology has limited impact on the performance of geographic
DTN routing; the average message delivery delay is mostly deter-

mined by the degree of the destination node.

4 Robustness of Complex Networks against Ran-
dom Node Removal

It is widely known that scale-free networks are robust against ran-
dom node removal, which is one of the major interesting findings in
network science [20,21]. In a scale-free network, a small number of
high-degree nodes called hub nodes exist. Therefore, even though
a part of nodes in the network is removed, the connectivity among
nodes is likely to be maintained.

Figure 6 illustrates how the network connectivity is degraded as
the fraction of nodes (i.e., vertices) are randomly removed from the
network. As the node removal ratio increases, nodes are likely to
be disconnected from the network and also clusters of nodes are
isolated from each other.

In the literature, the robustness of scale-free networks against
node removals (e.g., random node failures/attacks in communica-

tion networks) has been extensively studied [20,21]. For instance,

authors of [20] showed that by removing high-degree nodes, the di-
ameter (i.e., the average path length of shortest-paths between any
node pair in a network) of scale-free networks rapidly increases as
the node removal ratio increases. In contrast, the authors showed
that scale-free networks have the robustness against random node
removals since the connectivity of a network can be preserved be-
cause of the existence of hub nodes, even though a part of nodes are
eliminated.

On the contrary, in the literature, several questions on the robust-
ness of scale-free networks and its implication to communication
networks have been raised [22,23]. For instance, the authors of [22]
have pointed out the confusion in [20] that AS-level network topolo-
gies and router-level network topologies are not distinguished. Even
if an AS-level network topology has scale-free property, it does not
mean the underlying router-level topology has scale-free property.
Also, authors of [22] suggest that router-level network topologies
might not be scale-free since routers on the Internet has a practical
limitation on the number of links (i.e., the number of communica-
tion interfaces).

In this section, we revisit the robustness of complex networks
against random node removal. As explained above, it is clarified
that a scale-free network is robust when a significant portion of the
nodes are removed. However, such finding — scale-free networks
are robust — might not be valid under a typical node removal ratio
of real computer networks.

In what follows, through simulations, we compare the robustness
of scale-free and non-scale-free networks — scale-free networks
generated with Barabdsi Albert (BA) model [24], randomized BA
model and Li-Chen model [25] and non-scale-free networks gen-
erated with Erdds-Rényi (ER) model and Degree-Bounded (DB)
model [3] — against different levels of random node removal.
Specifically, we compare the largest component sizes in five classes
of networks (i.e., networks generated with BA, randomized BA, ER,
DB, and Li-Chen models) after random node removal.

Using synthetic network generation models, we generated scale-
free and non-scale-free networks, and we compared the robustness
of scale-free networks and non-scale-free networks against random
node removal when changing the node removal ratio (i.e., the ratio
of the number of removed nodes to the initial network size).

We denote the node removal ratio by p. By randomly removing
selected nodes from a generated network, we obtained a degener-
ated network. The original network and the degenerated network
with the node removal ratio p are denoted by G and G(p), respec-
tively.

To investigate the robustness of scale-free and non-scale-free net-
works against random node removal, we obtained the largest com-
ponent size in network G(p). The largest component size is the
maximum number of nodes in connected components (e.g, a sub-
graph in which any two vertices are connected by paths, and which

is connected to no additional vertices in the supergraph) in a graph.
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Figure 7 Relation between node removal ratio p and the largest component
size for N = 10,000 and k = 4

Refer to [3] for details of experiments.

Figure 7 shows the relation between the node removal ratio and
the largest component size in five types of networks with N =
10,000 and k = 4. Figure 7(b) shows the normalized largest com-
ponent size. The normalized largest component size is defined as
the ratio of the largest component size to the network size (i.e., the
number of remaining nodes excluding removed nodes).

From this figure, it is found that when the node removal ratio
is small, the largest component size in non-scale-free networks is
larger than that of scale-free networks. In particular, it is also found
that the degree-bounded random network shows the best robustness
among networks generated with other network generation models.
However, the normalized largest component size in scale-free net-
works is larger than that of non-scale-free networks when the node
removal ratio is very high (i.e., p = 0.7), which coincides with the
observation reported in [20,21].

Our findings in [3] are summarized as follows.

® Contrary to common understanding, non-scale-free net-
works are more robust than scale-free networks except for under
extremely high node removal ratios.

® The robustness of non-scale-free networks can be further im-
proved by bounding the minimum node degree of those networks.

Our findings imply that under extremely severe failures (e.g., 90%
of routers were destroyed or malfunctioning due to some reason),
scale-free communication networks would be more robust than non-
scale-free communication networks. If communication networks
are scale-free, the majority of 10% nodes would likely to be con-
nected with others. On the contrary, if communication networks are
non-scale-free, that 10% of nodes would be likely to be isolated with
others. However, if the failure ratio is not so exceptional (e.g., if the

failure ratio is between 1-20%), non-scale-free communication net-
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Figure § Comparison of epidemic routing and restrained epidemic routing

works are more robust than scale-free communication networks.
Phase transition at the critical threshold in a complex network —
the giant cluster in the network will disappear as the node removal
ratio exceeds the critical threshold — is an interesting phenomenon.
Hence, a vast number of studies in the literature investigate the ro-
bustness of complex networks at around the critical threshold. How-
ever, we should take account of the likelihood of those failures. For
instance, what are the chances that 90% of routers on the Internet
were destroyed? 1% node failure is likely to happen. The occur-
rence probability of 5% node failure is much smaller than that of 1%
node failure. Our findings indicate that communication networks
should be designed by taking account of occurrence probabilities of

different levels of network failures.

5 Message Dissemination with Restrained Epi-
demic Routing on Complex Networks

For realizing high-speed and efficient DTN routing, it is crucial to
deliver a message to the destination node immediately, and to delete
copies of the delivered message from the network quickly.

A promising approach for deleting redundant duplicates mes-
sages from a network is broadcasting ACKs [26]. Broadcasting
ACKs is a technique to avoid waste of network resources by broad-
casting information on successful delivery of the message to all
other nodes, asking for eliminating unnecessary copies.

In [27], we proposed restrained epidemic routing to improve the
performance of epidemic broadcast using broadcast ACKs. The ba-
sic idea of restrained epidemic routing is that if the message repli-
cation can be restrained just before the message is delivered to the
destination node, the number of generated message copies will be
moderately limited and we can expect message delivery delay will
decrease.

In epidemic routing, the number of message replicas in the net-
work increases exponentially. As soon as epidemic routing started,
it is necessary to increase the message copy as quickly as possible.
However, from the middle stage of epidemic routing to the latter
half, there is a possibility that network resources are wasted due
to an increase in message replication excessively. Therefore, in re-
strained epidemic routing, the increase in the number of message
copy is restrained by restraining message relay intentionally from
the middle to the latter half of epidemic routing (Fig. 8).

In this section, we analyze the characteristics of restrained epi-
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demic routing when the contact relationship between nodes is given
by a general contact model such as a complex network. Specifi-
cally, we investigate the dynamics of restrained epidemic routing as
a differential equation when the contact relation between nodes is
given by the undirected graph G = (V, E)). We analyze restrained
epidemic routing in the complex network composed of many nodes
by using mean field approximation (Degree-Based Mean Field Ap-
proximation) [28] in a complex network with a given degree distri-
bution.

In what follows, we show several numerical examples to inves-
tigate the characteristics of restrained epidemic routing in complex
networks. Refer to [4] for details.

We use three probability mass functions — Poisson distribution,
Exponential distribution, and Power-law distribution — as the de-
gree distribution of the graph G representing the contact relation-
ship of nodes (Fig. 9) [4].

®  Poisson distribution

Kk
Pk)y=e" o (n
e Exponential distribution
P(k)=(1—e ") t* 2
® Power-law distribution
P(h) = £ )

The time variation of the total number of message copies in the
network when changing the degree distribution of the graph G rep-
resenting the contact relationship between nodes is shown in Fig. 10.
In this figure, the results are shown in the case of the degree distribu-
tion are Poisson distribution, Exponential distribution, and Power-
law distribution. These results indicate the followings.

® The average message delivery delay is the smallest when the
degree distribution is a Poisson distribution (in three types of degree
distribution). However, there is no significant difference depending
on the difference in degree distribution.

® The average message sojourn time has a big difference de-

pending on the difference in degree distribution.
6 Conclusion

In Section 2, we have investigated how agent’s capabilities (i.e.,
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Figure 10 Effect of difference in contact relationship between nodes on
message delivery (N = 1,000, contact rate: 1/60, control pa-
rameter pp: 0.25)

memory and local visibility) can contribute to improving the effi-
ciency of a random walk on a graph —- in particular, the first hit-
ting time (i.e., the time elapsed since the agent starts its random
walk from a source node until it arrives the destination node at first)
— through simulation experiments. Specifically, we have compared
the first hitting time between a randomly-chosen node pair of two
random-walk-based mobility models (irreversible random walk and
biased random walk) on four types of networks (ER model, gen-
eralized BA model, Li-Chen model, and Voronoi diagram) through
simulation. Our findings include that the impact of agent’s local
visibility is quite dependent on the type of networks; i.e., appropri-
ate utilization of local visibility accelerates network exploration in
some networks, but, in other cases, the average first hitting time is
considerably increased.

In Section 3, we have examined the average message delivery de-
lay in geographic DTN routing under random walk mobility on a
large-scale network. In particular, we have addressed the research
question — how is the performance of geographic DTN routing af-
fected by the topology of the network (i.e., connections of many ge-
ographic locations)? Through numerical examples, we have shown
that the network topology has limited impact on the performance of
geographic DTN routing except for heavily loaded conditions; the
average message delivery delay is mostly determined by the degree
of the destination node.

In Section 4, we have compared the robustness of scale-free and
non-scale-free networks against random node removal through sim-
ulations. Specifically, we have generated multiple scale-free and
non-scale-free networks using five network generation models, and
compared the largest component sizes after random node removals.
Our findings include that, when the node removal ratio is not ex-
tremely high, non-scale-free networks are more robust than scale-
free networks. In particular, the degree-bounded random network
with bounding the minimum node degree shows the best robustness
against random node removal among five types of networks.

In Section 5, we have investigated the characteristics of restrained
epidemic routing in a general contact model where nodes contact
only some nodes. Specifically, we have examined the dynamics
of restrained epidemic routing when the contact relation between

nodes is given by an undirected graph. Thus, we have obtained an-
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alytically the average message delivery delay and average message
sojourn time of restrained epidemic routing in a complex network
composed of many nodes. We also have clarified how the average
message delivery delay and the average message sojourn time of re-
strained epidemic routing are affected by the difference in degree
distribution of complex networks.

So, what are lessons learned from these four research topics?
First, the impact of the network topology on the performance and
reliability of dynamical processes are multi-faceted. As we have
observed, if the dynamical process is a random-walk-based node
search (Section 2) or message delivery (Section 3), the network
topology might not have a significant impact. If the dynamical pro-
cess is a message routing (Section 4) or a flooding-like message
delivery (Section 5), its performance should vary considerably de-
pending on the topology of the underlying network.

‘We should note that the scale-free property of the network (or al-
most equivalently, the power-law distribution of node degrees) is not
a silver bullet for communication networks. The scale-free prop-
erty of the network topology is often harmful in terms of the net-
work robustness (Section 4) and the average message delivery delay
(Section 5). It seems that, in the literature, the advantages of scale-
free networks have been rather overstated. Further explorations on
the impact of the network topology on the characteristics of a wide
range of dynamical processes on the network are necessary. De-
veloping a theoretical framework to understand the interactions be-
tween the underlying network topology and the dynamical process

running on top of it would be of great importance.
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