On Control Parameters Tuning
for Active Queue Management M echanisms
using Multivariate Analysis

Tomoya Eguchi, Hiroyuki Ohsaki
Graduate School of Information

Science and Technology, Osaka University
Toyonaka, Osaka 560-8531, Japan
E-mail: {t-eguti, oosaki@ist.osaka-u.ac.jp

Abstract

In recent years, AQM (Active Queue Management)
mechani sms, which support the end-to-end congestion con-
trol mechanism of TCP by performing congestion control at
a router, have been actively studied by many researchers.
AQM mechanisms usually have several control parameters,
and their effectiveness depends on a setting of those control
parameters. Therefore, issues on parameter tuning of sev-
eral AQM mechanisms have been extensively studied using
simulation experiments. However, in most of those stud-
ies, only a small number of simulation experiments are per-
formed for investigating the effect of control parameters on
the performance of AQM mechanisms. In this paper, we
therefore statistically analyze a large number of simulation
experiments using multivariate analysis, and quantitatively
show how the performance of AQM mechanisms is affected
by a setting of control parameters. In particular, we an-
alyze the performance of three AQM mechanisms. GRED
(Gentle RED), DRED (Dynamic-RED), and SRED (Stabi-
lized RED), all of which arevariants of RED (RandomEarly
Detection). Through several numerical examples, we clarify
how control parameters of GRED, DRED, and SRED have
impact on their steady state performance measures such as
the average queue length and the packet loss probability.
Wk present a few guidelines for configuring control param-
eters of those AQM mechanisms.
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riving packets before the router’s buffer becomes full. For
instance, one of typical AQM mechanisms called “RED
(Random Early Detection)” [6] randomly drops an arriving
packet with a probability being proportional to its average
gueue length. However, it is known that RED’s effective-
ness is heavily dependent on a setting of its control param-
eters. Moreover, another problem that the average queue
length of RED in steady state depends on the number of
active TCP connections has been reported [6, 4]. Hence,
in the literature, several variants of RED — GRED (Gentle
RED) [5], DRED (Dynamic-RED) [1], and SRED (Stabi-
lized RED) [8] — have been proposed for solving problems
of RED.

GRED is an improvement of RED by using an ad hoc
approach [5]. In RED, when the average queue length be-
comes large, the packet drop probability is changed dras-
tically. Hence, RED has a problem that the queue length
becomes unstable when the average queue length is large.
GRED solves this problem by gently changing the packet
drop probability when the average queue lengthiis large. Al-
though extensive studies on RED have been performed by
many researchers, the performance of GRED has not been
fully investigated.

DRED is also animprovement of RED [1]. DRED solves
the RED’s known problem that the average queue length
in steady state is dependent on the number of active TCP
connections. DRED dynamically adjusts its packet drop
probability in proportion to its average queue length. So,
in DRED, the average queue length is not dependent on the
number of TCP connections. However, similar to RED, the
performance of DRED is significantly affected by a setting

For solving problems of conventional Drop Tail routers, of its control parameters such as 3, T, and L [1]. For
researches on AQM (Active Queue Management) mecha-example, simulation experiments show thaand L are di-
nisms have been performed actively in the last few years [2]. rectly related to its queue length and packet loss probability.
AQM mechanisms control the queue length (i.e., the num- However, effects of those control parameters on DRED’s
ber of packets in router’s buffer) by actively discarding ar- performance (e.g., the average queue length and the packet



loss probability) have not been quantitatively investigated. is updated as
Similar to DRED, SRED solves the RED’s problem that
the average queue length is dependent on the number of ac- 7 — (I-wg)q+weq
tive TCP connections [8]. The key idea of SRED is to es- _ _
timate the number of active TCP connections using a small Whereq is a current queue length, and, is one of RED's
cache called “zombie list’. SRED determines its packet control parameters, which specify the weight of an expo-
drop probability in proportion to the estimated number of Nential averaging. GRED determines the packet drop prob-
active TCP connections. Hence, in SRED, the average?@bility p, based on the average queue lenigéts
gueue length is almost independent of a setting of control
parameters [8]. However, the performance of SRED has?b = .
not been fully evaluated, and effects of SRED’s control pa- 0 if § < mingy

rameters on its performance have not been clarified. mazy (L —) if ming, <7< maxy,
isti q—mazh i - =
In [3], we have proposed a method of statistically ana- (1- ma:cp)(%) +maz, If mazy, < q<2maz,

lyzing a great number of simulation results, which are ob- 1 if § > 2max

tained by changing control parameters diversely, using the

multivariate analysis. We have quantitatively shown effects wheremin, is the minimum thresholdpax, is the max-

of RED’s control parameters on its performance metrics. In imum thresholdmaz,, is the maximum packet drop proba-

this paper, we evaluate performance of GRED, DRED, and bility, and all are control parameters of GRED. GRED ran-

SRED using our analysis method proposed in [3]. Namely, domly drops an arriving packet with the probability, de-

we analyze effects of control parameters of three AQM fined by

mechanism on their performance metrics (i.e., the average

gueue length and the packet loss probability). Do =
The organization of this paper is as follows. First, in Sec-

tion 2, we briefly explain three AQM mechanisms, GRED, wherecount is the number of packets that have arrived at

DRED, and SRED, which will be evaluated in this paper. the router since the last packet dropping_

In Section 3, we show the outline of the multiple regression

analysis, which is one of representative multivariate analy- > » pRED (Dynamic RED)

sis methods. We then briefly explain how the multiple re-

gression analysis is applied for evaluating performance of

AQM mechanisms. In Section 4, we explain our simula-

tion model and parameters used in simulation experiments.

In Section 5, we present analysis results of the multivari-

ate analysis and discuss how control parameters of AQM

mechanisms are related to their performance metrics. Fi-

nally, in Section 6, we summarize this paper and discuss

future works.
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RED has a problem that the average queue length is de-
pendent on the number of active TCP connections. DRED
solves this problem by using the feedback control, which
adjusts the packet drop probability in proportion to its av-
erage queue length [1]. DRED is therefore able to stabilize
the queue length at the target value without being dependent
on the number of TCP connections.

We briefly explain the algorithm of DRED. DRED uses
a fixed sampling interval, and the packet drop probability is

2 Active Queue M anagement updated every sampling interval. In what follows, we focus
on a packet that arrives at the router in th¢h sampling
21 GRED (Gentle RED) interval. First, DRED obtains the error signal as
GRED [5] is an improvement of RED (Random Early e(n) = qn) =T

Detection) proposed in [6]. RED drastically changes the

packet drop probability to one when the average queue
length is large. Hence, when the average queue length is
large, the queue length become unstable. GRED prevents 5(n) = (1 — B)éln — 1 1
the queue length from becoming unstable by gently chang- en) =1 =Fém—1)+Be(n) @)

ing the packet drop probability. In what follows, we briefly \yhereg is the DRED's control parameter, and specifies the
explain the algorithm of GRED. The packet dropping al- weight of an exponential averaging. Finally, usib@)

gorithm of GRED is essentially the same as that of RED. pRrED determines the packet drop probabifity(n) as
Please refer to [6] for the details of the RED algorithm.

GRED maintains the average queue length as well as ) é(n)
RED. For every packet arrival, the average queue legigth pa(n) = min |max q pa(n —1) +a 50 o) (2

Next, the filtered error signal af(n) (denoted byé(n)) is
updated as



where B is the buffer size of the routety is the DRED’s drop probability. Finally, SRED randomly drops an arriving
control parameter specifying the feedback gain of the packet with the probability .., defined by
packet drop probability, anglis the maximum of the packet

drop probability. The packet drop probability; is updated B in (1 1
every sampling interval, but DRED does not drop a packet ~ Pzar = Psred(q) x min { 1, (256 x P(n))?
if ¢(n) < L for maintaining high resource utilization. H
(n)
X1+ )
P(n)

2.3 SRED (Stabilized RED)

In RED, the average queue length depends on the num—3 Multiple Regression Analysis
ber of TCP connections. Moreover, RED does not distin-
guish misbehaving TCP flows, which will not reduce their  Multivariate analysis is a set of techniques for statisti-
transmission rates after packet losses. For solving thesecally analyzing observed data for investigating correlation
problems, SRED estimates the number of active TCP con-among multiple factors. Mditariate analysis is capable of
nections in a statistical manner, and determines the packekystematically handling a huge amount of data. In this pa-
drop probability according to the estimated number of TCP per, we use anultiple regression analysis, which is one of
connections [8]. For preventing unfairness caused by mis- several multivariate analysis techniques. Using the multiple
behaving TCP flows, SRED uses a different (i.e., large) regression analysis, we can analyze effects of multiple pre-
packet drop probability for misbehaving TCP flows. dictor variables (i.e., affecting factors) on a response vari-

For estimating the number of active TCP connections, able (i.e., an influenced factor). In what follows, we briefly
SRED uses “zombie list”. The zombie list maintains infor- explain how the multiple regression analysis is applied to
mation on each TCP connection, and its size is denoted byAQM mechanisms. Please refer to [7] for the details of the
list. Namely, each entry of the zombie list consists of a multiple regression analysis, and [3] for the details of the
flow identifier, a counter, and a time stamp. When a packet analysis method of AQM mechanisms using the multivari-
arrives at the router, SRED compares a randomly chosenate analysis.
entry from the zombie list with the entry corresponding to  |n this paper, we analyze effects of control parameters
the arriving packet. If these entries coincide, the counter of AQM mechanisms on their performance metrics using
in the entry is increased by one. Otherwise, the entry is the multiple regression analysis. We choose one of perfor-
probabilistically replaced by the information on the arriv-  mance metrics of AQM mechanisms (i.e., the average queue
ing packet with probability. With the zombie list, SRED  |ength and the packet loss probability) as a response vari-
estimates the number of active TCP connections. For diS-ab|e’ and control parameters of AQM mechanism as predic-
tinguishing misbehaving TCP flows, the zombie list is also tor variables. We first obtain a great number of simulation
used. See [8] for the details of SRED. results by diversely changing control parameters of AQM

We briefly explain the packet dropping algorithm of mechanisms. ¢ From simulation results, we then have a pair-
SRED. First, SRED compares a randomly chosen entry wise scatter plot for different response variables. The pair-

from the zombie list with the entry corresponding to the ar- wjse scatter plot illustrates relations between each variable
riving packet. We focus on the-th arriving packet. Ifthese  pairs as a scatter plot.

entries coincidef7 (n) is set to one. Otherwisé](n) is set For instance, in the multiple regression analysis, linear-
to zero. The probability>(n) that the zombie list contains iy among response variables and predictor variables is as-
the entry for the arriving packet is estimated by sumed. By using a pairwise scatter plot, the correlation

among response variables and response variables can be
visually understood. Furthermore, using a pairwise scat-
ter plot allows us to visually confirm whether outliers are
contained in the measured response variables and predictor
variables.

We next apply the multiple regression analysis to simu-
lation results. For measuring the accuracy of the multiple

Pn) = (1—a)P(n—1)+aH(n) (3)

wherea is the SRED's control parameter, and specifies the
weight of an exponential averaging. Next, in proportion
to the current queue lengt) the packet drop probability
psred(q) is updated for every packet arrival as

Prmaz ifLiB<q¢<B regression analysigz? (multiple R squared) will be used.
Psred(q) = 3 X Pmaz f §B<q< 3B (4) When R? is close to zero, it implies that the multiple re-
0 if0<q<iB gression analysis is not successful, and that some factors

other than predictor variables chosen affect the response
whereB is the buffer size of a routef, . is the SRED’s variable. On the other hand, whet? is close to one, it
control parameter, and limits the maximum of the packet implies that the multiple regression analysis is successful
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Figure 1. Simulation model.

Table 1. Parameter values used in simulation.

Bandwidth of the Bottleneck Link 1.5
Propagation Delay of the Bottleneck Link 50 [ms]
Packet Size 1,000 [byte]
Buffer Size 100 [packet]

age queue length. Table 2 shows the result of the multiple
regression analysis.

Figure 2 tells whether linear relation exists between each
pair of control parameters and the average queue length of
GRED. For instance, strong linear relation can be observed
betweenmin,, and the average queue length. Linear re-
lation can also been observed between other control pa-
rameters fraz,, Or max,) and the average queue length.
This indicates that the assumption required for performing
the multiple regression analysis (i.e., existence of linearity
among response variables and predictor variables) is valid.

In Tab.2, “regression coefficient” is a coefficient of the
regression equation corresponding to each predictor vari-
able, and “standardized regression coefficient” is obtained
by normalizing each regression coefficientvalue” is the
result of¢-test, which investigates whether one of predictor
variables affects the distribution of residuals of a regression

[Mbit/s]equation, and P-value” is the probability that the distribu-

tion of residuals is the same when one of predictor variables
is removed from the regression equation.

First, we focus on absolute values of the standardized
regression coefficients. One can find that the standardized
regression coefficient afiiny, (the minimum threshold) is
the largest. The values ofax, (the maximum packet drop

so that effects of control parameters of AQM mechanisms probability), maz, (the maximum threshold), and, (the

can be estimated from the regression coefficients.

4 Simulation

Figure 1 shows the simulation model used in this pa-

per, which consists of five TCP connections and two AQM
routers. Both AQM routers are either GRED, DRED, or
SRED. In this network configuration, the link between two
AQM routers is the bottleneck. In Tab. 1, we summarize
network parameters used in our simulation.

In this paper, we obtain simulation results for either
GRED, DRED, or SRED, by diversely changing its control

parameters. Every simulation is run for 30 seconds. We us
each simulation result of the last 5 seconds for calculating

weight of exponential averaging) become small in this or-
der. This means that effectsmfin ., max,, andmax, on

the average queue length become small in this order. These
results can be explained as follows. Since GRED does not
drop a packet when the average queue length is less than
mingy, the minimum value of the average queue length is
determined bymin,,. On the other hand, absolute values
of standardized regression coefficients show that magnitude
of effects ofmax, andmax, on the average queue length

is the half of that ofmin,. In addition, the value of the
standardized regression coefficientaf is very small (i.e.,
-0.02), and this shows that, hardly affects the average

gdueue length.

In general, for avoiding buffer overflow and buffer un-

performance metrics of the AQM mechanisms such as thederflow, it is desirable that the average queue length is

average queue length and the packet loss probability.

5 AnalysisResult

In this section, we show analysis results of the multi-

stabilized at an appropriate value. To realize thigpn ,
should be configured so that the buffer underflow can be
prevented. Thenmax, andmax, should be configured
so that buffer overflow can be prevented. When we compare
the analysis result in [3] with the analysis result for GRED,
it can be found that in REDmaz,, has the largest im-

ple regression analysis to simulation results for three AQM pact on the average queue length, whereas in GRED,,

mechanisms: GRED, DRED, and SRED.

51 GRED

has. This is because GRED improves RED’s problem that
the packet drop probability becomes one when the average
gueue length is larger thamaz,,. Namely, this implies

that RED’s simulation results or analysis results cannot be

Figure 2 shows the pairwise scatter plot displaying the used to configure control parameters of GRED.

relation among control parameters of GRED and its aver-

Figure 3 shows the pairwise scatter plot displaying the



e N Table 2. Multiple regression analysis result for

wa (LTI reee e g average queue length of GRED.
— ciiiiid = : . . standardized
T T [ =] predictor regression )
= . v =—=|  \ariable coefficient regression t-value P-value
. . o | ——— coefficient
: - .= | intercept 15.23 2441 0.00
===t w, 101.32 0.02 3.01 0.00
HE= s ming, 0.57 0.67 70.82 0.00
= 12 maxy, 0.17 0.28 29.49  0.00
ST T mazy -44.17 -0.34 -49.69 0.00
e maxp R? 0.90
i i ‘ i l ! l!"mﬁ lu" | averageq | g
i B ;i;l F L & Table 3. Multipleregression analysis result for
ocos | oois | o 100 a0 2 w0 00 packet loss probability of GRED.
, o . . standardized
Figure 2. Pairwise scatter plot of GRED con- pre.d|ctor regression regression  t-value P-value
trol parameters and average queue length variable  coefficient . “ oo
intercept 1.28 80.35 0.00
Wq -1.96 -0.024 -2.29 0.02
ming, -0.007 -0.53 -35.41 0.00
relation among control parameters of GRED and the packet maxy, -0.003 -0.31 -20.90 0.00
loss probability. Table 3 shows the result of the multiple re-  max,, 0.77 0.36 33.86 0.00
gression analysis investigating the packet loss probability of R2 0.75

GRED. When we focus on absolute values of standardized

regression coefficients, valuesiain,,, max,, max, and

wq become small in this order. This shows that the magni-

tude of effects ofnaz, andmax, on the packetloss prob-  can find that the absolute value'Bfis the largest, then val-
ability is about 2/3 and 1/2 of that @tin ;. The packetloss  ues ofa, 8, andL becomes small in this order. Note that
probability counts packet losses caused by GRED's inten-the absolute value of the standardized regression coefficient
tional packet dropping and buffer overflow. By comparing of «, 3, and L is less than 1/9 of that df’. As we have
Tab. 2 and Tab. 3, one can find that absolute values of stan-explained in Section 2.2 is the target the queue length of
dardized regression coefficients wfin¢,, max,, mazn, DRED so that it should have direct impact on the average
andw, are almost the same. This can be explained by the queue length. However, the correlation betwé&eand the
following reasons. Namely, (1) the packet loss probability average queue length in Fig. 4 shows that the average queue
in the network and the window size of TCP have very strong length of DRED is not always equal f5; i.e., the average
correlation [9], (2) since TCP has a window-based flow con- queue length is scattered aroudfidOn the other hand, stan-
trol, the average queue length of the bottleneck router is de-dardized regression coefficients@fand3 are small. This

termined by the window size of TCP. is because, as can be seen from Eqgs.(1) and(2nd 5
determine the DRED's transient characteristics, but do not

52 DRED affect steady state characteristics such as the average queue
length.

Figure 4 shows the pairwise scatter plot displaying the  Figure 5 shows the pairwise scatter plot displaying the
relation amongx (the feedback gain for the packet drop relation among DRED's control parameters and the packet
probability), 3 (the weight of the exponential averaging), loss probability. Table 5 shows the result of the multiple
(the target queue lengthl, (the minimum threshold), and  regression analysis for the packet loss probability. By fo-
the average queue length of DRED. Table 4 shows the resultcusing on absolute values of standardized regression co-
of the multiple regression analysis. By focusing on absolute efficients, one can find that the absolute valug ok the
values of standardized regression coefficients in Tab. 4, onelargest, and then values of L, and become small in this
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Figure 3. Pairwise scatter plot of GRED con- Figure 4. Pairwise scatter plot of DRED con-
trol parameters and packet loss probability trol parameters and average queue length

order. Similar to the case of the average queue length ingression coefficient ofv (the feedback gain of the packet

DRED, standardized regression coefficientsxpf}, and L drop probability) is the largest, and then valuespgf,.
are very small (i.e., less than 1/9 of the standardized regres-(the maximum packet drop probability)st (the size of the
sion coefficient ofl"). zombie list), anch (the probability for updating the zombie

¢From these observations, we conclude that the controllist) are very small. This means that the control parameter
parametef” has the largestimpact on DRED'’s performance « affects the average queue length, but other control param-
metrics (i.e., the average queue length and the packet lossters f,,..., list, andp) hardly affect the average queue
probability) whereas other control parameters have little im- length. The pairwise scatter plot in Fig. 6 shows that vari-
pact. Hence, when configuring DRED’s control parameters, ation of the average queue length becomes large bs-
only the control parametér should be chosen carefully so comes large. This is because wheiis large, the estima-

that neither buffer overflow nor buffer underflow occurs. tion of the number of TCP connections becomes inaccurate,
leading the queue length to be unstable.
53 SRED Finally, Fig. 7 shows the pairwise scatter plot display-

ing the relation among SRED’s control parameters and the
Figure 6 shows the pairwise scatter plot displaying the packet loss probability. Table 7 shows the result of the mul-
relation among SRED’s control parameters and the averagetiple regression analysis for the packet loss probability.
gueue length. Table 6 shows the result of the multiple re-  As with the result of the multiple regression analysis for

gression analysis for the packet loss probability. SRED (Tab.(6)), the value of the multiple R squared is small
We focus on the value akR? (multiple R squared), the  (i.e., 0.47).
value of the multiple R squared of SRED is small (i.e., By focusing on absolute values of standardized regres-

0.54). This means that the average queue length of SREDsion coefficients, one can find that almost the same tendency
cannot be expressed by the sum of predictor variables (i.e.,as the result of the multiple regression analysis for the aver-
control parameters of SRED). This implies that that the al- age queue length is observed. Namely, the absolute value of

gorithm of determining the packet loss probability..q(q) the standardized regression coefficient:aé about as twice
of SRED is the non-linear to the average queue length ( as that ofp.,,,.., and standardized regression coefficients of
Eq.(4)). list andp are very small.

By focusing on absolute values of standardized regres- ¢ From these observations, when configuring control pa-
sion coefficients, it can be found that the standardized re-rameters of SRED, we should setandp,,,.., to be small
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anaple  Coetiicient - efficient trol parameters and packet loss probability
intercept 4.51 56.79 0.00
e 1.85 0.02 1.15 0.25
3 0.10 0.02 0.93 0.35
}Og f 882 832 3:23gg 882 we have discussed how control parameters of AQM mecha-
R?g '0'75 - Bl : nisms should be configured based on our analysis results.

In this paper, we have analyzed effects of control pa-
rameters of three AQM mechanisms on their steady state
performance. Our analytic approach can be applied to in-
vestigate how system parameters such as the bottleneck
bandwidth and the propagation delay affect performance of
AQM mechanisms. Hence, we are currently working on in-
vestigating effects of system parameters on GRED, DRED,
and SRED using the multivariate analysis.

values for preventing the average queue length and the
packet loss probability of SRED to become large. On the
contrary,list andp can be configured freely without paying
attention to SRED'’s steady state characteristics.
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Figure 7. Pairwise scatter plot of SRED con-
trol parameters and packet loss pability
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