Modeling and Performance Evaluation of DRED (Dynamic Random Early Detection) using Fluid-Flow Approximation

> Hideyuki Yamamoto, Hiroyuki Ohsaki Graduate School of Information Sci. & Tech. Osaka University, Japan hideymmt@ist.osaka-u.ac.jp

1. State Goals and Define the System

- - Confirm validity of our approximate analysis
 - Investigate DRED's steady-state/transient-state performance
- System Definition

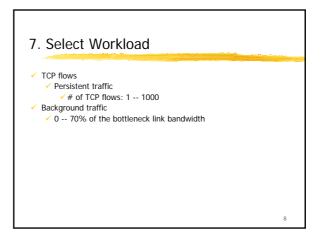
 - ✓ IP network including...
 ✓ DRED routers and links
 - ✓ source and destination hosts

2. List Services and Outcomes

- Services Provided
 - ✓ Congestion control for TCP flows
- Outcomes
 - ✓ High link bandwidth utilization?
 - ✓ Low packet loss probability?
 - ✓ Low packet transfer delay/jitter?

3. Select Metrics

- Speed (case of successful service case)
 - Individual
 - ✓ TCP throughput, round-trip time, packet loss probability
 - ✓ Global
 - ✓ Queue occupancy, link utilization, packet loss probability
- ✓ Reliability (case of error)
 - ✓ None
- Availability (case of unavailability)
 - ✓ None


4. List Parameters

- System parameters
 - Network related
 - ✓ Topology
 - ✓ Link bandwidth, latency, loss ratio
 - ✓ DRED router related
 - \checkmark Control parameters (Δt , , , , T, L)
 - ✓ Queue size
- Workload parameters
- # of TCP flows, TCP traffic pattern
- Background traffic pattern

5. Select Factors to Study

- System parameters
 - Network related
 - ✓ Topology
 - ✓ <u>Link bandwidth</u>, <u>latency</u>, loss ratio
 - ✓ DRED router related
 - Control parameters (Δt,
 - Queue size
- Workload parameters
- # of TCP flows, TCP traffic pattern
- Background traffic pattern

6. Select Evaluation Technique Vuse analytical modeling? Ves Use simulation? Ves Use measurement of real system? No 7

8. Design Experiments

9. Analyze and Interpret Data

10. Present Results

