Quasi-Dynamic Network Model Partition Method for Accelerating Parallel Network Simulation

Hiroyuki Ohsaki
Gomez Oscar
Makoto Imase
Graduate School of Information Science & Technology
Osaka University, Japan

Contents
- Background
- Research Objective
- Quasi-Dynamic Network Model Partition Method
 - Basic idea
 - Algorithm
- Partition Example
- Experiments
- Conclusion

Background
- Increasing size and complexity of the Internet
- Demand for evaluation technique of large-scale networks
- Strongly required to...
 - Ensure reliability, safety, and robustness
 - Allow future network expandability
 - Assess impact of terrorism and natural disasters

Conventional Techniques for Performance Evaluation
- Analysis techniques
 - e.g., Queuing theory
 - # of states exponentially increases as # of nodes increases
- Simulation techniques
 - A huge amount of computing resources is required
 - Both techniques are...
 - Not applicable to large-scale networks

Parallel Simulation
- May allow simulation of large-scale networks
- Network simulators that support parallel simulation
 - QualNet, OPNET
 - Run on a single SMP computer
 - Not run on multiple computers
 - PDNS (Parallel Distributed NS)
 - Run on multiple computers
 - Have limited features

Research Objective
- Accelerate parallel network simulation by proposing a network model partition method
 - QD-PART (Quasi-Dynamic network model PARTition method)
 - Minimize communication overhead among computing resources
 - Balance loads of computing resources
Network Model Partition Overview

Basic Idea of QD-PART
- In many network simulation studies...
 - A network simulation is typically repeated several times with the same parameter set...
 - for estimating the confidence interval of steady state measures
- Partition of a network model can be gradually optimized based on past simulation results
 - Total simulation time
 - CPU usage of computing resources
 - Traffic intensity (e.g., \# of packets transmitted)

QD-PART Algorithm: Notation
- Network model
 - \(G = (V,E) \)
 - \(V \): node (host, router)
 - \(E \): link
 - \(w(i,j) \): edge weight

QD-PART Algorithm: Step 1
- 1. Make initial partition
 - Assume all links have the same traffic intensity
 - Apply a graph partition algorithm METIS [7]
 - Results in \(N \) sub-graphs \(G_1...G_N \)
 - Perform parallel simulation and measure statistics
- 2. Make second partition based on traffic intensity
- 3. Improve partition using measured CPU usage

QD-PART Algorithm: Step 2
- 1. Make initial partition
- 2. Make second partition based on traffic intensity
 - Take account of the measured traffic intensity
 \(w(i,j) = \frac{l(i,j)}{t(i,j)} \)
 - Apply a graph partition algorithm METIS [7]
 - Results in \(N \) sub-graphs \(G_1...G_N \)
 - Perform parallel simulation and measure statistics
- 3. Improve partition using measured CPU usage

QD-PART Algorithm: Step 3
- 1. Make initial partition
- 2. Make second partition based on traffic intensity
- 3. Improve partition using measured CPU usage
 - Move boundary nodes...
 - from the most loaded computing resource
to the least loaded computing resource
 - Perform parallel simulation and measure statistics
 - If the total simulation time is reduced...
 - Repeat step 3
Partition example:
- a network (20 nodes, 5 flows) into two sub-network models.

Step 1: make initial partition by assuming all links have the same traffic intensity.

Partition example:
- a network (20 nodes, 5 flows) into two sub-network models.

Step 2: make second partition based on the measured traffic intensity.

Step 3: improve partition using measured CPU usage; move nodes from G2 to G1.

Experiment Setup
- 2 computing resources (partition into two sub-network models)
 - Intel Xeon 2.4GHz with 1,024MB memory
 - Linux 2.4.30
 - PDNS version 2.27-v1a
 - 1G Ethernet

Simulation Model
- Network model
 - Number of nodes: 20
 - Number of links: 20
 - Link bandwidth: 1 or 0-1 [Mbit/s]
 - Link propagation delay: 1 or 0-1 [ms]
- Workload
 - # of persistent TCP flows: 2 or 10

Total Simulation Time vs. # of Simulation Run (Homogeneous Case)
- total simulation time is gradually reduced
Conclusion

- Proposed a network model partition method QD-PART
 - To accelerate parallel network simulation
- QD-PART...
 - Utilizes the fact that a network simulation is typically **repeated several times**
 - Re-partitions the network model based on **past simulation results**
 - **Significantly reduces** the total simulation time

Future Works

- Through **performance evaluation** of QD-PART
 - Other types of network models
 - More computing resources
- Extend QD-PART to support **Grid environment**
 - Heterogeneous computing resources
 - Heterogeneous networking resources

Total Simulation Time vs. # of Simulation Run (Heterogeneous Case)

QD-PART is quite effective in heterogeneous case