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Abstract—It has been pointed out by many re-
searchers that network traffic in LAN and WAN envi-
ronment has self-similarity. However, it has not been
clear why self-similarity is observed in the network
traffic. Also, its impact on network performance has
not been fully investigated. In this paper, we inves-
tigate cause of traffic self-similarity in a network em-
ploying TCP/IP as its upper-layer protocols through
simulation experiments. We further investigate effect
of the TCP mechanism on self-similarity of the net-
work traffic, and effect of self-similarity of the network
traffic on the users’ QoS.

I. INTRODUCTION

Markovian models have been widely used as an analytic
model of network traffic because of its analytical tractabil-
ity. The main advantage of such Markovian models is in
its memoryless property; that is, future events are com-
pletely independent from past ones. However, recent re-
search on the real Ethernet traffic has shown the existence
of self-similarity or long-range dependence, which cannot
be modeled by those Markovian models [1],[2]. In [3],
Garrett et. al have been pointed out that VBR (Vari-
able Bit Rate) video traffic also possesses self-similarity.
Several researches are actively undergoing to develop an
analytic model of network traffic with self-similarity, with
which effects of self-similarity on the network performance
could be evaluated. For example, Willinger et. al have
explained in [4] that self-similarity of network traffic is
caused by multiplexing a number of traffic streams, each
of which is modeled by ON/OFF source where the length
of ON or OFF period follows heavy-tailed distribution.

However, the “discovery” made in [4] and their follow-
ing papers is just an observation in the network, and it has
not been fully discussed why the network traffic on Ether-
net shows self-similarity. It seems true that the source of
the network traffic itself has the cause of self-similarity; for
example, heavy-tailed distribution of document size [5].
However, self-similarity of the network traffic observed in
the network might be affected by the network protocols
such as a TCP (Transmission Control Protocol) mech-
anism, which has a feedback congestion control mecha-
nism. Accordingly, the authors in [6],[7] have investigated
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through simulation experiments and have indicated that
the degree of self-similarity of network traffic is changed
by the TCP mechanism. Moreover, they show that net-
work performance is degraded when network traffic has
strong self-similarity. However, their study on the effects
caused by upper-layer protocols is limited; for example,
it is not clear which part of the TCP mechanism (e.g.,
a window-based flow control or a packet retransmission
mechanism) affects the intensity of self-similarity of the
network traffic. Furthermore, it has not also been cleared
how various network parameters (i.e., offered traffic load,
a link bandwidth, and a buffer capacity of switch) affect
self-similarity of traffic observed in the network.

Another and more important problem is how self-
similarity of network traffic gives impact on users’” QoS
(Quality of Service). QoS provided to users is one of the
most important performance measures. Previous studies
focusing on only packet-level and first-order performance
measures (e.g., an average packet delay and an average
packet loss probability) are apparently insufficient. The
main subject of this paper is, therefore, to investigate the
effects of self-similarity of the network traffic on users’
QoS. In our simulation setting, we consider a TCP-based
network and a file transfer service as its typical applica-
tion. As QoS measures, we use effective throughput and
delay variation of a file transfer.

Based on the above discussion, we investigate effects of
the TCP mechanism as the upper-layer protocol on self-
similarity of the network traffic observed in the network
through simulation experiments. Namely, we investigate
(1) why the network traffic exhibits self-similarity, (2) how
the upper-layer protocol affects self-similarity of the net-
work traffic, and (3) how self-similarity of the traffic and
the upper-layer protocol affect users’ QoS. As a simulation
model, we use a server-client network model that consists
of two servers and 32 clients contending for a single bot-
tleneck link. Each client requests a file transfer from one
of two servers using the TCP mechanism. By changing
characteristics of the source traffic (i.e., file size distribu-
tion), we evaluate its effect on self-similarity of the traffic
observed at the bottleneck link. We then change various
system parameters such as offered traffic load, bandwidth
of the bottleneck link, and a buffer size of the switch, to in-
vestigate relations between self-similarity of the traffic and
those system parameters. For this purpose, we compare
simulation results with and without the TCP mechanism
as in [6], [7], and show effects of upper-layer protocols on
self-similarity clearly.

This paper is organized as follows. In Section II, we
give a brief definition of self-similarity and three estima-
tion methods of self-similarity from measured data. In



Section III, we describe our simulation model in detail.
In Section IV, we investigate effects of the TCP mech-
anism on self-similarity of the network traffic and users’
QoS through various simulation results. Finally, we sum-
marize this paper with a few remarks in Section V.

II. SELF-SIMILARITY

In this section, we briefly present the definition of self-
similarity, and introduce three methods to estimate the
intensity of self-similarity from observed data. See, for
example, [8], [9] for more detail.

A. Definition

Let X be a stochastic process on a discrete-time, i.e.,
X ={X;:t=0,1,2,...}. Let X" be a stochastic
process generated from X by aggregating m events of X,
ie., XM = {X,(Lm) :n=20,1,2...}, where

nm
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When the auto-correlation function of X (™) (™) (k), sat-
isfies (™) (k) ~ k=C=2H) for 1/2 < H < 1, X is defined
to possess (asymptotically second-order) self-similarity (~
denotes that both sides are asymptotically proportional
to each other when & — 00). In the above equation,
H is called Hurst parameter that defines the intensity of
self-similarity. It is known that asymptotically second-
order self-similarity is equivalent to the long-range depen-
dence [10].

B. Estimation Methods of Hurst Parameter

Several methods for confirming existence of self-
similarity in observed data, and for estimating its Hurst
parameter have been proposed in the literature [8], [11],
[12]. However, there is no generic and statistically rigor-
ous one. We therefore use three methods to determine the
value of the Hurst parameter in Section IV: a variance-
time plot, an R/S plot, and a Whittle’s estimator.

In the variance-time plot, an aggregated process X (™)
defined by Eq. (1) is first computed from the measured
process X. If X(™) has self-similarity, it satisfies the fol-
lowing property [8], [12], [13]:

Var[X(™] & a - m?H 2,

where a is a constant. Therefore, when X (™) has self-
similarity, a slope of log(Var[X (™)]) as a function of logm
converges to (2H — 2) for a sufficiently large m.

In the R/S plot, the following equation is first computed
from the measured process X:

max (0, Wy,...,W,) —min(0, Wy,...,W,)

S(n) ’

where W) = (X1 + Xo + -+ + Xj) — kX (n). In the above
equation, X (n) and S(n) are the average and the standard
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Fig. 1. Simulation model.

deviation of the process X, respectively. If X has self-
similarity, the average of R(n)/S(n) should converge to
a-nfl, where a is a constant [8], [12], [13]. By using this
property, the Hurst parameter can be obtained by plotting
log(R(n)/S(n)) against logn.

Although the variance-time plot and the R/S plot
are useful for rough estimations of the existence of self-
similarity in the measured data, these methods are not
statistically rigorous. On the contrary, the Whittle’s es-
timator can be used to obtain the Hurst parameter with
its confidence interval in a statistically rigorous manner.
However, the Whittle’s estimator assumes the underlying
process be a Gaussian process. Let f(\;2) and I(\) be a
spectral density function and a periodgram of X, respec-
tively. A value of z that minimizes W (z) given by

I
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is then computed, and the Hurst parameter, H, is deter-

mined by z [11]. If the process X is not Gaussian, X (™)

for large m is used instead because X (™) converges to be
a Gaussian process as m goes infinity.

III. SIMULATION MODEL

Figure 1 illustrates our simulation model, which is a
server-client model where 32 clients are connected to two
servers via a single bottleneck link. We use a simulation
package called ns [14] by modifying some codes. In our
model, each client requests a file transfer to a randomly se-
lected server, and the server sends a file back as a series of
fixed-size (i.e., 1 Kbyte) packets. As an upper-layer proto-
col, Reno version of TCP (Transmission Control Protocol)
or UDP (User Datagram Protocol) are used. The average
file size is fixed at 22 Kbyte. The average request inter-
val, which is duration from termination of the previous
file transfer to occurrence of the next file transfer request,
is set to 3.2 s. Either the exponential distribution or the
Pareto distribution is used as the distribution function of
file sizes, and the exponential distribution is used for re-
quest intervals. The probability density function of the
Pareto distribution is defined by

1—-(k/x)* k<u,

Note that the Pareto distribution is heavy-tailed distribu-
tion. The tail part of the Pareto distribution becomes
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Fig. 2. Hurst parameter vs. a (UDP).

large as the shape parameter, a (> 0), gets close to
1[15], and k specifies the minimum value generated by the
Pareto distribution. Since we fix the average file size to
22 Kbyte in simulation experiments, the value of k varies
for a different value of a. For example, we use k = 2,151
for « = 1.05 and k = 10,975 for o = 1.95.

The following is known: when infinite ON/OFF
sources, where an interval of either ON or OFF period
follows the Pareto distribution with parameter «, are mul-
tiplexed, the superposed process becomes a FGN (Frac-
tional Gaussian Noise) and the Hurst parameter of this
FGN is given by (3 — «)/2 [4]. This suggests that the
aggregated traffic in our simulation model observed be-
fore the bottleneck link is approximated by FGN. In Sec-
tion IV, we will compare the estimated value of the Hurst
parameter with the theoretical value of (3 — a)/2.

We note that document size distribution of WWW
(World Wide Web) traffic is approximated by the Pareto
distribution with o = 1.12 [16]. Moreover, by using the
Least Squares Estimator [15], we have found that file size
distribution of a UNIX operating system [5] is approxi-
mated by the Pareto distribution with @ = 0.685, and its
tail distribution (over 2 Mbyte) is approximated by the
Pareto distribution with o = 1.294.

In our simulation, we change the buffer size of the
switch from 4 Kbyte to 512 Kbyte, and the bottleneck
link bandwidth from 150 Kbit/s to 15 Mbit/s. The band-
widths of all other links are fixed at 10 Mbit/s. Since the
link between switches is bottleneck in our simulation, we
focus on the throughput at the bottleneck link (i.e., the
output link of Switch 2 in Fig. 1) for a network perfor-
mance measure. We also change the offered traffic load
from 0.2 to 1.3 by adjusting the average request interval.
We note that the traffic load is defined as a ratio of the
amount of traffic arriving at the bottleneck switch, when
no flow control mechanism is provided by the upper-layer
protocol, to the bandwidth of the bottleneck link. Thus,
actual traffic load on the bottleneck link is affected by
the window flow control and packet retransmission mech-
anisms of the TCP mechanism.

IV. SIMULATION RESULTS

A. Case of UDP as the Upper-Layer Protocol

1) Effects of File Size Distribution: In this subsection,
we consider the case where the UDP mechanism is ap-
plied as the upper-layer protocol. In this case, neither
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Fig. 3. Hurst parameter vs. offered traffic load (UDP).

flow control nor packet retransmission mechanism is em-
ployed. We set the buffer size of the switch to 128 Kbyte,
and the bandwidth of the bottleneck link to 1.5 Mbit/s.
The offered traffic load is 1.1, which is the normalized
value by the bottleneck link bandwidth. In Figure 2, we
show the Hurst parameter of the observed traffic at the
bottleneck link for different values of @ (1 < a < 2), which
determines the tail part of the file size distribution (see
Eq.(2)) [15]. We also show the Hurst parameter when file
sizes are exponentially distributed (labeled as “Exp” in
the figure). We show Hurst parameters obtained by the
variance-time plot, the R/S plot, and the Whittle’s esti-
mator. For the Hurst parameter estimated by the Whit-
tle’s estimator, its 95% confidence interval is also shown.

When the UDP mechanism is adopted as the upper-
layer protocol, the traffic observed at the bottleneck link
is modeled by multiplexed ON/OFF sources where the
ON interval is determined by the file size distribution and
the OFF interval is by the request interval distribution.
It is expected that the Hurst parameter of such traffic
becomes (3—a)/2 when the ON interval follows the Pareto
distribution, and 0.5 when both of ON and OFF intervals
follow the exponential distribution [9]. However, as can
be found from Fig. 2, the Hurst parameters of the UDP
case are very different from the theoretical value. When
the file size distribution follows the Pareto distribution,
Hurst parameter becomes small as a increases. However
the slope is smaller than (3—a)/2. And when both file size
distribution and request interval distribution follow the
exponential distribution, Hurst parameter is about 0.64,
being slightly larger than 0.5. This difference is caused
by the buffer overflow at the bottleneck switch. UDP
provides no congestion control mechanism so that many
packets are lost (more than 10%) at the bottleneck switch,
and packet losses occur intermittently. Thus, the traffic
observed at the bottleneck link shows rather short-term
dependency, leading to the modest level of self-similarity.

2) Effects of Offered Traffic Load: To validate above
observations, we next show estimated values of the Hurst
parameter and the packet loss probability at the switch in
Figs. 3 and 4, respectively, where the offered traffic load is
varied from 0.2 to 1.3. Figure 3 indicates that the Hurst
parameter is not affected by the offered traffic load when
the file size distribution follows the Pareto distribution
with a small value of a. However, in the case of large
a or exponential file size distribution, there exists a ten-
dency that the Hurst parameter increases as the offered
traffic load gets large, converging to about 0.65. This is
because characteristics of the network traffic observed at



1 T T T T T T
= 01k ]
= 4
= L N ]
[=] 0.01 DN Pareto (a=1.05) —— -+
% r - Pareto (a=1.20) -----
a2 F Pareto (a=1.35) ------ 1
Jhar 0.001 | Pareto (a=1.65) -~ o
@ r Pareto (a=1.95) --— 1
S L Exponential -----
g 0.0001 —
1e-05 L 1 1 1 1 1 1

o 0.2 0.4 0.6 0.8 1 1.2 1.4
Offered Traffic Load
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Fig. 5. Hurst parameter vs. a (TCP).

the bottleneck link are almost determined by the pattern
of packet losses occurring at the switch buffer; when «a
is small, more than 10% of packets are lost in the switch
buffer regardless of the offered traffic load (see Fig. 4). So
the Hurst parameter is mostly dependent on the pattern
of packet losses. In the case of large a or the exponential
file size distribution, however, packet loss probability is
rather small when the offered traffic load is not high. The
Hurst parameter is therefore close to the theoretical value
of (3 —a)/2. However, packet loss probability increases
when the offered traffic load is high, leading the Hurst
parameter around 0.65.

B. Case of TCP as the Upper-Layer Protocol

In this subsection, we show simulation results when the
TCP mechanism is used as the upper-layer protocol. It
is noted that Figs. 5, 8, and 9 presented in this section
correspond to Figs. 2 through 4 in Section A, respectively.
Note that “packet loss probability” (i.e., the buffer over-
flow probability at the bottleneck switch while the TCP
mechanism recovers lost packets) increases up to about
0.1% as « decreases.

1) Effects of File Size Distribution: We first show rela-
tion between a of the Pareto distribution for file sizes and
the Hurst parameter of the traffic observed on the bottle-
neck link in Fig. 5. By comparing Fig. 5 with Fig. 2 of
the UDP case, it can be found that the Hurst parameter
gets larger particulary when « is close to 1. Note that
the theoretical value of the Hurst parameter of the FGN
given by (3 —a)/2 is according to the line obtained by the
Whittle’s estimator. This indicate that the self-similarity
of the incoming traffic (i.e., aggregated traffic before the
bottleneck link) is preserved in the measured traffic on the
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Fig. 6. Average packet transfer delay vs. a (TCP).

bottleneck link. Namely, since packet loss probability is
greatly reduced because of the window flow control of the
TCP mechanism, self-similarity of the incoming traffic is
left unchanged.

In the figure, it can also be found that the Hurst pa-
rameter in the case of the exponentially distributed file
size is around 0.73, which is larger than that of the UDP
case. This is because of packet retransmissions of the TCP
mechanism. Namely, when some of packets consisting of a
file are lost in the network, lost packets are retransmitted
by the TCP mechanism. This effect can be considered as
stretching the file size so that the tail of the Pareto dis-
tribution is expanded. Consequently, the incoming traffic
holds higher self-similarity, leading to a larger value of the
Hurst parameter.

We next investigate the packet/file transfer delay from
the server to each client. The packet transfer delay in-
cludes delays resulted from packet retransmissions by the
TCP mechanism. The file transfer delay is the time be-
tween when the server sends the first packet of the file and
when the server receives the ACK (ACKnowledgement)
packet for the last packet from the client. When the file
size distribution follows the Pareto distribution with small
a, it is expected that the variance of packet/file transfer
delay would be large. In the following results, we therefore
show the average value of packet/file transfer delays ob-
tained from 30 simulation runs and their 95% confidence
intervals.

Figure 6 indicates that the average packet transfer delay
increases as a decreases. This can be explained as follows:
Packet loss probability increases for a small value of a due
to heavy-tailed distribution of file sizes, and then dropped
packets are retransmitted by the TCP’s mechanism. In
other words, the average packet transfer delay and the
packet loss probability increase as the self-similarity of
the incoming traffic becomes strong even when the TCP
mechanism is employed. Therefore, it is expected that the
users’ QoS (file transfer delay in the current case) would
be further degraded when the network traffic has strong
self-similarity.

However, the average file transfer delay is not affected
by « as can be seen in Fig. 6. This phenomenon can be ex-
plained as follows. Basically, the smaller file size becomes,
the faster file transmission speed becomes when both re-
transmission and queuing delays are ignored. However,
we recall that the TCP mechanism adopts a slow-start
mechanism, which exponentially increases its window-size
at each receipt of ACK packet. For instance, assuming no
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Fig. 7. File transfer delays vs. a (TCP).

packet loss and no queuing delays, average file transfer de-
lay for a file of 3 Kbyte would be twice of the round-trip
time. Moreover, for 11 Kbyte and 20 Kbyte files, 4 times
and 5 times of the round-trip time would be required. On
the other hand, when the file size distribution follows the
Pareto distribution with small «, the probability that rel-
atively small size file is generated is larger than that of
with large a. Henceforth, it is expected that the average
file transfer delay increases as « increases. However, as
Fig. 6 indicates, the average file size is not affected by
the value of a. It is because the difference in the average
file transfer delay for different values of o caused by the
TCP’s slow-start mechanism is compensated by the differ-
ence resulted from the TCP’s retransmission mechanism.
Thus, we conclude that the average file transfer delay is
not so influenced by the existence of the self-similarity of
the incoming traffic.

In Figure 7, we show the average file transfer delay for
different values of . In this figure, 90%, 99%, and 99.9%
file transfer delays are also shown to investigate effect of
self-similarity on the users’ QoS. n% file transfer delay
is defined as the value that covers n% of all file transfer
delays. This figure clearly indicates that n% file transfer
delay becomes extremely large when « is close to 1 (i.e.,
when the incoming traffic possesses strong self-similarity).
For example, the 99.9% file transfer delay for a = 1.05 is
as four times as that for @« = 1.95. Thus, we conclude
that the self-similarity of the network traffic has influence
not on the average file transfer delay but on the 99.9% file
transfer delay.

When we think of document transfer from WWW
servers, the average file transfer delay would not be af-
fected by existence of the self-similarity that the distri-
bution of WWW documents intrinsically holds. However,
if high-quality network service is expected, the 99.9% file
transfer delay would be of concern in addition to the av-
erage file transfer delay. So, the network must be pro-
visioned carefully by taking account of the self-similarity
of the network traffic. In other words, to provide better
QoS’s to users, the buffer size at the switch and the ca-
pacity of the bottleneck link bandwidth must be chosen
carefully. We investigate effects of the buffer size at the
switch and the bottleneck link bandwidth on users’ QoS
in Section IV-C.

2) Effects of Offered Traffic Load: Figure 8 shows re-
lation between the offered traffic load and the Hurst pa-
rameter of the traffic observed at the bottleneck link. It
can be found from the figure that the Hurst parameter in-

N N\—I—\IH‘
0.9 | S
§ ) B T %
:
£ os | — |
S 66 (a3 ‘é
[= 1§ - 1= o
B 0.7 - Pie—to (a=1:05) i
2 SO Pareto (a=1.20) -----
e Pareto (a=1.35) ------
0.6 o Pareto (0=1.65) - i
B Pareto (a=1.95) ---
0.5 - s . Expopential - - -

o 0.2 0.4 0.6 0.8 1 1.2 1.4
Offered Traffic Load
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Fig. 9. Packet loss probability vs. offered traffic load (TCP).

creases as the offered traffic load increases when « is large.
However, when « is small, the Hurst parameter decreases
as the offered load increases. This phenomenon can be ex-
plained by packet loss probability shown in Fig. 9; when
the packet loss probability is large, the traffic pattern on
the bottleneck link is almost determined by the pattern of
packet losses. Namely, long-range dependence of the bot-
tleneck traffic is lost because of a great number of packet
losses so that the Hurst parameter would converge to a
fixed value.

We next show the effect of the offered traffic load on
the average packet/file transfer delays in Figs. 10 and 11,
respectively. We also show relation between the offered
traffic load and the 99.9% file transfer delay in Fig.12.
In this case, the average file size is set to 22 Kbyte and
the buffer size at the switch is to 128 Kbyte. Figure 10
shows that the average packet transfer delay in the case
of low traffic load condition is almost independent of .
This is because few packet losses occur at the switch when
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Fig. 12. 99.9% file transfer delay vs. offered traffic load (TCP)

the offered traffic load is low so that retransmission delay
caused by the TCP mechanism is negligible. On the other
hand, when the offered traffic load is not low, the smaller
a is, the larger the average packet transfer delay becomes.
This is resulted from retransmission delays caused by the
TCP mechanism due to the high packet loss probability.

We next focus on the average file transfer delay. It
can be found from the figure that the average file transfer
delay is also independent of « in the case of low traffic
load. This can be explained by the same reason as in the
case of Fig. 6; when a becomes small, reduction of the
file transfer delay caused by the slow-start mechanism is
canceled by increase caused by the retransmission mecha-
nism. However, it should be noted that the self-similarity
of the incoming traffic gives a serious effect on the 99.9%
file transfer delay. For example, when « is rather small
and the offered traffic load is 1.3, the 99.9% file transfer
delay increases from 9.3 s to 36.3 s. It is because a small
value of a means generation of extremely large file with
a certain probability. When many packets arrive at the
switch continuously, the switch buffer suddenly grows and
overflows, which leads to increased packet losses. More-
over, the retransmission of the TCP mechanism further
increases the 99.9% file transfer delay.

For users’ QoS, effective throughput is also important.
We show relation between the offered traffic load and the
effective throughput in Fig. 13. The effective through-
put increases almost linearly as the offered traffic load
increases. In other words, the effective throughput is not
affected by the intensity of the self-similarity of the net-
work traffic when the TCP mechanism is employed as the
upper-layer protocol. From the above discussion, we con-
clude that the self-similarity of the network traffic has lit-
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tle impact on the first-order network performances such
as the average packet/file transfer delays and the effec-
tive throughput. However, it cannot be negligible when
it comes to second-order performance measures such as a
variance of file transfer delays.

C. Effects of System Parameters

In the previous section, we have investigated effects of
the characteristics of the incoming traffic (e.g., the file
size distribution and the offered traffic load) on the self-
similarity of the traffic observed on the bottleneck link.
Simulation results have shown that self-similarity of the
observed traffic has strong relation with the packet loss
probability at the bottleneck switch. Since system param-
eters such as the buffer size of the bottleneck switch and
the link bandwidth have direct influence on packet loss
probability, it is expected that those parameters also af-
fect self-similarity of the observed traffic. In what follows,
we investigate relation between those system parameters
and self-similarity of the network traffic.

1) Effects of Buffer Size: In Figure 14, we first show the
Hurst parameters for different buffer sizes ranging from
4 Kbyte to 512 Kbyte. It can be found from Fig. 14 that
the Hurst parameter converges to about 0.7 regardless
of a value of a when the buffer size is quite small (e.g.,
4 Kbyte). It can be explained as follows. When the buffer
size is small, the number of packets that can be queued
at the switch buffer is only four since we set the packet
size to 1 Kbyte. Consequently, the packet loss probability
becomes large (i.e., about 10%), and therefore character-
istic of the incoming traffic is almost lost. In addition, the
behavior of the queue length is not so changed, and then
the Hurst parameters become identical even with differ-
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Fig. 15. Average packet transfer delay vs. buffer size (TCP).
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Fig. 16. Average file transfer delay vs. buffer size (TCP).

ent values of a’s. Figure 14 also indicates that the Hurst
parameter increases as the buffer size increases. How-
ever, when the buffer size is over 100 Kbyte, the Hurst
parameter is not affected by the buffer size. It is because
when the buffer size is large enough, the window flow con-
trol of the TCP mechanism prevents buffer overflow at the
switch. Therefore, the self-similarity of the incoming traf-
fic is mostly kept unchanged.

We next show the average packet transfer delay in
Fig. 15 for different buffer sizes. This figure shows an
important result; when the buffer size is smaller than
32 Kbyte, the average packet transfer delay decreases as
the buffer size increases. However, when the buffer size
becomes larger than 32 Kbyte, the average packet transfer
delay increases again. In this region, the average packet
transfer delay increases as « decreases. This phenomenon
is explained as follows. Because of the window-flow con-
trol of the TCP mechanism, packet losses at the switch
are avoided when the buffer size is more than 32 Kbyte.
Therefore, if the buffer size is greater than this, the in-
creased queuing delay caused by the large switch buffer
results in increase of the average packet transfer delay.
This tendency becomes more apparent when « is small
since a small value of a causes bursty arrival of packets
so that the average queue length becomes large.

On the contrary, if we focus on the average file transfer
delay, performance degradation caused by the extremely
large buffer size disappears as shown in Fig. 16. We also
show the 99.9% file transfer delay in Fig. 17, which shows
that the average file transfer delay is not affected by «a
when the buffer size is larger than 100 Kbyte. This phe-
nomenon can also be explained by the same reason as
discussed in Section IV-B: cancellation of the difference
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Fig. 17. 99.9% file transfer delay vs. buffer size (TCP).
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Fig. 18. Hurst parameter vs. link bandwidth (TCP).

caused by the retransmission mechanism and the slow-
start mechanism. However, the 99.9% file transfer delay
is heavily dependent on « as can be seen in Fig. 17. In
particular, the 99.9% file transfer delay is still affected
by «a even with sufficiently large (e.g., 100 Kbyte) switch
buffer.

2) Effects of Bottleneck Link Bandwidth: Finally, we
show effect of the bottleneck link bandwidth; the Hurst
parameter and the 99.9% file transfer delay for different
values of the bottleneck link speed (i.e., from 150 Kbit/s
to 15 Mbit/s) are shown in Fig. 18 through 20. We ad-
justed the average request interval to make the offered
traffic load constant (1.1 in this case). One can find from
Fig. 18 that the Hurst parameter converges to about 0.95
irrespective of @ when the bottleneck link bandwidth is
quite small. This is because the bottleneck link is fully
utilized almost all the time regardless of a, leading strong
self-similarity of the traffic observed on the bottleneck
link.

However, the larger the bottleneck link bandwidth be-
comes, the larger effect of « is observed in the Hurst pa-
rameter. It is because the increase of the bottleneck link
bandwidth leads to decrease of packet losses at the bottle-
neck switch and henceforth characteristics of the incoming
traffic directly affect the characteristics of the traffic ob-
served on the bottleneck link.

Figures 19 and 20 show the average and the 99.9% file
transfer delays, respectively. From these figures, one can
find that the effect of a on the file transfer delay dimin-
ishes as the bottleneck link bandwidth is large. This can
be explained as follows. When bottleneck bandwidth is
small (e.g., 150 Kbit/s), the difference in file transfer de-
lays for different values of « is caused by the queuing de-
lays at the switch buffer. For instance, the average queue



T T
= 10 Pareto (a=1.05) E
& "R Pareto (a=1.20) -----
3 N Pareto (a=1.35) ------
o S N Pareto (0=1.65) - .
Z Pareto (a=1.95) --—
% 6 - R Exponential ----- _|
=
2L —
T 4
D
f=2]
<] 2~
L
<<
(¢]
0.1 10

1
Bandwidth (Mbit/s)

Fig. 19. Average file transfer delay vs. link bandwidth (TCP).
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Fig. 20. 99.9% file transfer delay vs. link bandwidth (TCP).

length is 34 packets for « = 1.05 while 27 packets for
a = 1.95. However, as the bottleneck link bandwidth gets
larger, the difference in the average file transfer delays be-
comes smaller since the queuing delay experienced at the
switch buffer becomes relatively small. However, Fig. 20
also shows that one can dramatically improve the 99.9%
file transfer delay by increasing the bottleneck bandwidth
if a is small (i.e., the incoming traffic has strong self-
similarity). For example, when the file size distribution
follows the exponential distribution, the 99.9% file trans-
fer delay is decreased from 67 s to 1.12 s by increasing the
bottleneck link bandwidth from 150 Kbit/s to 15 Mbit/s.
And if the incoming traffic has strong self-similarity (e.g.
a = 1.05), it is decreased from 395 s to 7.47 s. Thus, we
conclude that the increase of the bottleneck link band-
width is very effective way to improve second-order net-
work performances if the network traffic holds strong self-
similarity.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have investigated effects of the upper-
layer protocol on self-similarity of the network traffic and
the effect of self-similarity of the network traffic on the
users’ QoS. We have found that when the TCP mecha-
nism is used as the upper-layer protocol, the character-
istic of the traffic observed on the bottleneck link is di-
rectly affected by the characteristic of the incoming traffic
since the TCP mechanism greatly decreases packet losses
in the network. However, as the packet loss probability
increases, the intensity of the self-similarity of the network
traffic becomes very different from that of the incoming
traffic.

We have also found that the average file transfer de-
lay and the effective throuput are not strongly effected
by the self-similarity of the network traffic. However, the
99.9% file transfer delay increases as the self-similarity of
the network traffic becomes strong. From these obser-
vations, we have concluded that the self-similarity of the
network traffic has little impact on the first-order network
performances. However, it cannot be negligible when it
comes to second-order performance measures such as the
variance of file transfer delays.

As a future work, we should take account of effect of
lower-layer protocols such as a CSMA/CD protocol on
self-similarity of the network traffic, to reveal the cause of
self-similarity found in the real Ethernet traffic.
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