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あらまし 本稿では、並列ネットワークシミュレーション高速化のための、ネットワークモデル分割手法 QD-PART

(Quasi-Dynamic network model PARTition method) を提案する。ネットワークシミュレーションは、定常状態における

性能指標の信頼区間を推定するために、同じパラメータセットに対して複数回繰り返して実行されることが多い。

QD-PARTは、ネットワークシミュレーションのこの性質を利用する。QD-PARTは、過去のシミュレーション結果 (シ

ミュレーション時間や、計算機資源の CPU使用量、各リンクのトラヒック量)に基づき、ネットワークモデル分割を

段階的に最適化する。QD-PARTは、各並列シミュレーションの実行終了時に、計算機間の通信オーバーヘッドが小さ

く、かつ部分ネットワークモデルを実行する計算機間で負荷分散が図れるように、ネットワークモデルの再分割を行

う。並列分散ネットワークシミュレータを用いた実験により、QD-PARTがネットワークモデル分割を段階的に改善す

ることで、ネットワークシミュレーションが高速化されることを示す。
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Abstract In this paper, we propose a network model partition method called QD-PART (Quasi-Dynamic network model

PARTition method) for accelerating parallel network simulation. The key of QD-PART is to utilize the fact that a network

simulation is typically repeated several times with the same parameter set for estimating the confidence interval of steady

state measures. QD-PART gradually optimizes partition of a network model based on past simulation results such as the total

simulation time, CPU usage of computing resources, and traffic intensity (i.e., the number of packets transmitted) of each

link. At the end of each parallel simulation run, QD-PART re-partitions the network model based on such information aim-

ing at minimizing communication overhead among computing resources and balancing load of sub-network models executed

on computing resources. Through several experiments using a parallel-distributed network simulator, we show how parallel

network simulation can be accelerated using QD-PART by gradually improving the network model partition.
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1 Introduction

In recent years, demand for a technique to evaluate the perfor-

mance of large-scale networks has heightened along with the in-

creasing size and complexity of the Internet [1, 2]. The Internet

today is a best-effort network, and communication quality between

end nodes is in no way guaranteed. Of course, robustness to some

extent has been achieved by dynamic routing mechanisms such as

OSPF and BGP even in the current Internet. However, the Internet

itself is indispensable as society’s communication infrastructure, so
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a technique to evaluate the performance of large-scale networks is

in strong demand to ensure the reliability, safety, and robustness of

networks, to allow future network expandability and design, and to

assess the impact of terrorism and natural disasters.

However, conventional techniques to evaluate the performance

of a network such as mathematical analysis techniques and simula-

tion techniques are directed toward relatively small-scale networks.

As an example, queuing theory [3] has been widely used in per-

formance evaluation of conventional computer networks, but it is

not readily applied to performance evaluation of the large-scale and

complex Internet. When rigorously analyzing the performance of

a network using queuing theory, the number of states for analysis

increases exponentially according to the increase in the number of

nodes connected to the network.

Simulation techniques, as opposed to numerical analysis tech-

niques, allow performance evaluation of complex networks [4]. Per-

formance evaluation of medium-scale networks in particular has

become possible through the increasing speeds and capacities of

computers in recent years. However, communication protocols for

the Internet are extremely complex, so massive computer resources

are required for simulation of networks, and simulation of large-

scale networks is still difficult. The majority of network simula-

tors widely used today simulate behavior at a packet level, so they

use an event-driven architecture. A technique for faster speed of

network simulators operating on a single computer has also been

proposed [5], although a different approach is needed to simulate a

large-scale network.

Research with regard to parallel simulations as a technology to al-

low simulation of large-scale networks has been conducted in recent

years [6–8]. Construction of relatively inexpensive cluster comput-

ers has become easier through the faster speeds and lower prices of

desktop computers and the spread of high-speed network interfaces

such as Gigabit Ethernet. In addition, Grid computing using a wide-

area network to integrate computer resources around the world has

also attracted attention.

However, the majority of network simulators have an event-

driven architecture, so parallelization of network simulators is diffi-

cult. The execution speed of parallel simulation is heavily affected

by partitioning of a network model; i.e., the total simulation time de-

pends on how a network model is divided into multiple sub-network

models, each of which will be assigned to a different computing re-

source.

In this paper, we propose a network model partition method called

QD-PART (Quasi-Dynamic network model PARTition method) for

accelerating parallel network simulation. The key of QD-PART is

to utilize the fact that a network simulation is typically repeated sev-

eral times with the same parameter set for estimating the confidence

interval of steady state measures. Namely, QD-PART gradually op-

timizes partition of a network model based on past simulation re-

sults such as the total simulation time, CPU usage of computing

resources, and traffic intensity (i.e., the number of packets transmit-

ted) of each link. At the end of each parallel simulation run, QD-

PART re-partitions the network model based on such information

aiming at minimizing communication overhead among computing

resources and balancing load of sub-network models executed on

computing resources.

The structure of this paper is as follows. First, Section 2 describes

related work regarding network model partition methods. Section 3

explains QD-PART, our network model partition algorithm. Sec-

tion 4 illustrates an example partition of a network model using

QD-PART. In Section 5, we present several experimental results of

QD-PART, showing how parallel network simulation can be accel-

erated by gradually improving the network model partition. Finally,

Section 6 concludes this paper and discusses future research topics.

2 Related Work

In the literature, there have been several studies on a network

model partition method for accelerating parallel network simula-

tion. In [9], the authors have proposed a network model parti-

tion method for cluster computers. The key of the proposed par-

tition method is to view a network model as a graph, and divides

it into several sub-graphs using a simple min-cut algorithm [10].

The weight of each edge is assigned as the traffic intensity of the

corresponding link. The traffic intensity is estimated using TCP

steady-state analysis. Although the proposed partition method tries

to minimize communication overhead among computing resources,

the partition result might not be good since it simply uses rough

estimation of the traffic intensity.

In [11], the authors have proposed a benchmark-based network

model partition method for cluster computers. The proposed parti-

tion algorithm utilizes a graph partitioning tool called METIS [12]

for dividing a network model into several sub-network models. Sim-

ilar to [9], the proposed partition algorithm utilizes simple estima-

tion of traffic intensity of each link, so that the partition result might

not be good.

3 Quasi-Dynamic Network Model Partition Method

In this section, we first explain the basic idea of our network

model partition method called QD-PART (Quasi-Dynamic network

model PARTition method), followed by its algorithm description.

3. 1 Basic Idea

The key of QD-PART is to utilize the fact that a network simu-

lation is typically repeated multiple times with the same parameter

set for estimating the confidence interval of steady state measures.

In many network simulation studies, performance analysts gen-

erally need to measure statistics, such as throughput, mean and

variance of delay, and packet loss rate, in steady state or transient

state [13]. In particular, statistics in steady state are generally of
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great concern. Since most packet-level simulation uses a Monte

Carlo simulation technique and the simulation time is finite, mea-

sured statistics in steady state cannot be a precise estimate of real

statistics. Hence, for validating accuracy of measured statistics, the

confidence interval of steady state measures are typically calculated

by sampling independent steady state measures.

There are several techniques for estimating the confidence inter-

val of steady state measures, such as the independent replications

method, the batch means method, the autoregressive method, the

spectrum analysis, and the regenerative method [13]. In theory, ad-

vanced techniques, such as the autoregressive method and the re-

generative method, are effective for estimating the confidence in-

terval since the simulation time required can be much smaller than

that of other estimation techniques. However, their application are

not straightforward since, for instance, choosing regenerating point

needs careful consideration. In practice, the simplest technique of

the independent replications method has been widely used in many

network simulation studies. In the independent replications method,

for obtaining samples of steady state measures, a network simula-

tion is repeated multiple times with the same parameter set but with

a different seed for the random number generator.

In QD-PART, we utilize this — a network simulation is typi-

cally repeated several times with the same parameter set for esti-

mating the confidence interval of steady state measures. Namely,

QD-PART gradually optimizes partition of a network model based

on past simulation results such as the total simulation time, CPU us-

age of computing resources, and traffic intensity (i.e., the number of

packets transmitted) of each link. At the end of each parallel simu-

lation run, QD-PART re-partitions the network model based on such

information aiming at minimizing communication overhead among

computing resources and balancing load of sub-network models ex-

ecuted on computing resources.

3. 2 Algorithm

First, we define several terms used throughout this paper (see

Fig. 1); node is either a host or router in simulation, link is a trans-

mission link connecting nodes in simulation, and flow is a stream

of packets sent from a source node to a destination node. A set of

nodes, links, and flows with their attributes (i.e., system and control

parameters) to be simulated is called network model. A network

model partition method splits a network model into two or more

sub-network models. Sub-network models are assigned to com-

puting resources, each of which runs a parallel network simulator

and performs simulation by coordinating with other computing re-

sources. A network device between computing resources is called

networking resource.

In QD-PART, a network model is first represented as an undi-

rected graph G = (V, E), where V = {1, 2, . . .} and E =

{1, 2, . . .}. Vertices in V correspond to nodes (hosts or router), and

edges in E correspond to links between nodes. The weight of edge

node
(router, host)

link

partition

network model

sub-network
model 1

sub-network
model 2

flow

computing
resource 1

parallel
simulator

computing
resource 2

parallel
simulator

Fig. 1 Network model partition overview

(i, j) is denoted by w(i, j). Furthermore, the total number of parti-

tions of the network model (i.e., the number of sub-network models)

is N . Also, let Tk be the total simulation time of the k-th parallel

simulation, Pk(n) be the CPU usage of the computing resource n

in the k-th parallel simulation, and lk(i, j) be the traffic intensity of

a link corresponding to edge (i, j).

The algorithm of QD-PART is as follows.

（ 1） Make initial partition

Before running the first simulation, we have no information on

the traffic intensity of each link. Hence, the initial partition is de-

termined by assuming that all edges have the same traffic intensity.

Namely, weight w(i, j) of edge (i, j) is defined simply as

w(i, j) =
1

τ (i, j)α
, (1)

where τ (i, j) is the propagation delay of a link corresponding to

edge (i, j), and α(> 0) is a control parameter determining sensitiv-

ity of the link propagation delay on a network model partition.

A graph partition algorithm [14] is applied to G, which results in

N sub-graphs G1, . . . , GN . These N sub-network models are as-

signed to N computing resources, and parallel network simulation

is performed. At the end of simulation, several results such as the

total simulation time T1, CPU usage of each computing resource

P1(n), and traffic intensity of each link l1(i, j) are obtained.

（ 2） Make second partition based on measured traffic intensity

Since we now have several statistics of the first parallel simula-

tion such as the total simulation time, the CPU usage of computing

resources, and the traffic intensity of each link, a better partition

than the initial one can be determined.

It is known that the communication overhead among computing

resources is almost proportional to the number of simulation events

exchanged between computing resources. In a packet-level network

simulation, almost all simulation events are regarding packet pro-
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cessing. Hence, the communication overhead among computing

resources should be almost proportional to the number of packets

exchanged between nodes in different partitions.

The second partition is therefore determined by taking account

of the traffic intensity l1(i, j). More specifically, weight w(i, j) of

edge (i, j) is redefined as

w(i, j) =
l1(i, j)

τ (i, j)α
. (2)

Similar to the previous step, a graph partition algorithm [14] is ap-

plied to G with redefined edge weights, resulting in N sub-graphs

G1, . . . , GN . These N sub-network models are again assigned to

N computing resources, and the second parallel network simula-

tion is performed. At the end of simulation, several statistics such

as the total simulation time T2, CPU usage of a computing resource

P2(n), and the traffic intensity of each link l2(i, j) are obtained.

（ 3） Improve partition using measured CPU usage

In subsequent parallel simulations, a network model partition

G1, . . . , GN is gradually improved based on the measured statis-

tics of past simulations. Namely, in the k-th parallel simulation, a

network model partition is determined by modifying the partition in

the (k − 1)-th parallel simulation.

The idea for improving the previous partition is to move a node

from a more loaded computing resource to a less loaded one. For

this purpose, CPU usage of computing resources in the previous

simulation, Pk−1(n), are examined, and the most loaded comput-

ing resource (i.e., one with the largest Pk−1(n)) is identified. Let

Gn be the most loaded sub-network model, and V ′(Gn) be a sub-

set of vertices in Gn, which are connected to one or more nodes in

other sub-network models. Namely, a node i in V ′(Gn) and a node

j in V (G−Gn) are connected by edge (i, j). A node in V ′(Gn) is

randomly chosen, and it is moved to the other sub-network model.

By moving a node from a more loaded computing resource to less

loaded one, we expect that load balancing among computing re-

sources is improved, possibly leading to a shorter total simulation

time.

N sub-network models G1, . . . , GN are assigned to N com-

puting resources, and the k-th parallel network simulation is per-

formed. At the end of simulation, several statistics such as the total

simulation time Tk, CPU usage of a computing resource Pk(n), and

the traffic intensity of each link lk(i, j) are obtained.

If the total simulation time Tk is shorter than the previous paral-

lel simulation Tk−1, step (3) is repeated. Otherwise, the network

model partition is fixed at that of the previous simulation, which

results in the least total simulation time.

4 Partition Example

In this section, an example partition of a network model with

N = 2 (i.e., partition into two sub-network models) using QD-

PART is presented.

Figure 2 shows an example network model, which is composed of
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Fig. 2 Initial partition is determined by assuming that all edges have the

same traffic intensity. Dark-gray nodes are in G1, and light-gray

nodes are in G2. Gray lines represent crossing links.

20 nodes and 5 flows. In the figure, circles, thick lines, and dotted

lines with arrow heads represent nodes, links, and flows, respec-

tively.

（ 1） Make initial partition

The initial partition is determined by assuming that all edges have

the same traffic intensity. By applying a graph partition algorithm

in [14], two sub-network models, G1 and G2, are obtained.

Figure 2 shows the initial partition with N = 2. In Fig. 2, dark-

gray nodes represent nodes in G1, and light-gray nodes represent

nodes in G2. Gray lines represent crossing links (i.e., links between

two sub-network models of G1 and G2).

Two sub-network models, G1 and G2, are assigned to two com-

puting resources, parallel network simulation is performed, and sev-

eral statistics are measured.

（ 2） Make second partition based on measured traffic intensity

The second partition is determined by taking account of the traf-

fic intensity measured in the first simulation. Figure 3 shows the

result of the second partition. In this figure, the number shown at

each edge represents the traffic intensity (i.e., the number of packets

transmitted) of the corresponding link. With edge weights defined

by Eq. (2), a graph partition algorithm [14] is applied to G, re-

sulting in two sub-network models G1 and G2. Similar to Fig. 2,

a network model partition is represented by the color of nodes and

links.

In the second partition, the network model is split at edges (1, 2),

(2, 9), and (6, 10) since these edges have relatively small weights

(i.e., relatively small traffic intensity).
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Fig. 3 The second partition is determined by taking account of the traffic

intensity measured in the first simulation. The number at an edge is

the traffic intensity.

（ 3） Improve partition using measured CPU usage

A network model partition is gradually improved based on the

measured statistics of past simulations. Suppose that in the second

simulation (Fig. 3), the computing resource processing G2 is more

loaded than that processing G1 (i.e., P2(1) < P2(2)). Hence, in

this step, a node in G2 is moved to G1. From a subset of vertices

in G2 connected to G1, V ′(G2) = {1, 9, 10}, a node is randomly

chosen. In Fig. 3, the node 1 is chosen, and moved to G1. The

resulting partition is shown in Fig. 4.

Two refined sub-network models, G1 and G2, are assigned to

two computing resources, parallel network simulation is performed.

This step is repeated until moving node does not contribute to

shorten the total simulation time.

5 Experiments

In this section, we evaluate the performance of QD-PART through

several experiments using a parallel-distributed network simulator.

In our experiments, we use the following devices and software:

two identical computers (Intel Xeon 2.4GHz processor with 1,024

Mbyte memory running Linux 2.4.30 and PDNS [15] version 2.27-

v1a) as computing resources and a gigabit Ethernet switch as a net-

working resource.

We have implemented a network model partition software, which

translates a NS2 [16] simulation script into multiple PDNS simula-

tion scripts using QD-PART method.

A network model is generated as a random graph with 20 nodes.

We consider two cases: homogeneous case and heterogeneous case.
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Fig. 4 A network model partition is gradually improved based on the mea-

sured statistics of past simulations. Since the computing resource

processing G2 is more loaded (i.e., P2(1) < P2(2)), the node 1 in

G2 is moved to G1.

In the homogeneous case, the bandwidth and the propagation delay

of each link is equally set to 1 [Mbit/s] and 1 [ms], respectively. In

the heterogeneous case, the bandwidth and the propagation delay of

each link is randomly set to values between 0 and 1 [Mbit/s], and

between 0 and 1 [ms], respectively. Either two or ten TCP connec-

tions are generated between randomly-chosen nodes. All routers are

DropTail with 100 [packet] buffer.

In what follows, due to space limitation, only experiment results

with α = 0 are presented.

Figure 5 shows the total simulation time at each simulation run for

two TCP connections and ten TCP connections in the homogeneous

case. This figure shows that using QD-PART the total simulation

time is gradually reduced. One can find from this figure that the

total simulation time is converged by the 8-th simulation. Regard-

less of the number of TCP connections, the total simulation time is

significantly reduced from the initial partition.

Figure 6 shows the total simulation time at each simulation run

for two TCP connections and ten TCP connections in the heteroge-

neous case. This figure shows QD-PART is quite effective particu-

larly in the heterogeneous case. Also this figure shows that the total

simulation time is converged at the 7-th simulation.

The reason of QD-PART’s effectiveness in the heterogeneous

case can be explained by heterogeneity in the bandwidth and the

propagation delay of links. If the bandwidth and/or the propagation

delay of all links are almost the same, existing graph partition algo-

rithms such as [14] are effective. However, if the bandwidth and/or

the propagation delay of links are quite different with each other,
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Fig. 5 Total simulation time vs. number of simulation run for two TCP

connections and ten TCP connections in the homogeneous case.
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Fig. 6 Total simulation time vs. number of simulation run for two TCP

connections and ten TCP connections in the heterogeneous case.

those graph partition algorithms are not good for finding a parti-

tion. This is because the traffic intensity is difficult to estimate and

computational burden of a sub-network model is difficult to predict.

Since QD-PART uses the measured statistics of past simulation, it

can gradually improve the partition, resulting in a shorter total sim-

ulation time.

6 Conclusion

In this paper, we propose a network model partition method called

QD-PART for accelerating parallel network simulation. QD-PART

utilizes the fact that a network simulation is typically repeated sev-

eral times with the same parameter set for estimating the confidence

interval of steady state measures. At the end of each parallel simu-

lation run, QD-PART re-partitions the network model based on past

simulation results such as the total simulation time, CPU usage of

computing resources, and traffic intensity (i.e., the number of pack-

ets transmitted) of each link. Through several experiments using

the PDNS network simulator, we have shown that QD-PART sig-

nificantly reduces the total simulation time, in particular, when the

network model is heterogeneous.

We believe QD-PART have made an important step toward real-

izing parallel simulation of large-scale networks, but there remains

several problems to be solved. Our future work includes through

performance evaluation of QD-PART (e.g., with other types of net-

work models and more computing resources) and tuning of its con-

trol parameter α. Also it is important to extend QD-PART to support

heterogeneous computing resources and networking resources such

as Grid computing.
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