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Abstract— A window-based flow control mechanism is a
sort of feedback-based congestion control mechanisms, and
has been widely used in current TCP/IP networks. Recently
proposed TCP Vegas is another version of the TCP mecha-
nism and has potential to achieve much better performance
than current TCP Tahoe and Reno. However, it has not been
fully investigated how to determine control parameters of
TCP Vegas. In this paper, we focus on a window-based flow
control mechanism based on a congestion avoidance mech-
anism of TCP Vegas. We first present a control theoretic
analysis for its stability. We then discuss several drawbacks
of the window-based flow control mechanism, being inher-
ited from TCP Vegas, through simulation experiments. We
finally investigate how these drawbacks is solved by incor-
porating the ECN (Explicit Congestion Notification) mech-
anism into the window-based flow control mechanism.

I. Introduction
In a packet-switched network, a feedback-based congestion
control mechanism is essential to provide data transfer ser-
vices efficiently. Its main objective is to prevent packet
losses in the network, and to utilize network resources ef-
fectively. The current Internet uses a window-based flow
control mechanism in TCP, as the feedback-based conges-
tion control mechanism. As an example, a version of TCP
mechanism calledTCP Reno uses packet losses in the net-
work as feedback information since packet losses implies
congestion occurrence in the network [1, 2]. In short, the
congestion control mechanism of TCP Reno first increases
its window size, and as soon as it detects packet losses in the
network, it reduces its window size. TCP Reno repeats this
process indefinitely during the connection.

Recently another version of TCP calledTCP Vegas has
been proposed by Brakmoet al., which can achieve better
performance than TCP Reno [3, 4]. TCP Vegas has follow-
ing advantages over TCP Reno: (1) a new retransmission
mechanism, (2) an improved congestion avoidance mech-
anism that controls buffer occupancy, and (3) a modified
slow-start mechanism. With these features, it has been re-
ported in [4] that total throughput of TCP Vegas becomes

37–71 % better than TCP Reno, and that the number of re-
transmitted packets of TCP Vegas can be reduced to about
1/5–1/2 of TCP Reno. The performance improvement is
mainly achieved by the congestion avoidance mechanism
of TCP Vegas, which uses a measured round-trip time of
the packet — i.e., duration between the source host sends
the packet and it receives its corresponding ACK (acknowl-
edgment) packet. More specifically, TCP Vegas measures
a round-trip time of a packet, and estimates the number of
queued packets in the router’s buffer. It then controls its
window size to make it constant. There is no need for the
source host to wait for packet losses to know occurrence of
congestion in the network. The window size of TCP Vegas
becomes stabilized when the network is in steady state, and
therefore it can achieve much better throughput than TCP
Reno.

In this paper, we first derive a condition that window sizes
of TCP connections and a queue length (i.e., the number
of packets waiting in the router’s buffer) are stabilized in
steady state, which we will calla stability condition. Our
previous work has shown that the window-based flow con-
trol mechanism works quite efficiently in terms of stability
and transient performance when several control parameters
are chosen appropriately [5]. However, as we will discuss
in Section III, it has several drawbacks. These drawbacks
are directly inherited from the congestion avoidance mecha-
nism of TCP Vegas. In this paper, we therefore discuss how
the ECN (Explicit Congestion Notification) mechanism can
be incorporated into the window-based flow control mecha-
nism based on TCP Vegas, and demonstrate its effectiveness
through simulation experiments.

Organization of this paper is as follows. In Section II, we
explain our window-based flow control mechanism based
on the congestion avoidance mechanism of TCP Vegas fol-
lowed by our control theoretic analysis for its stability. In
Section III, we perform simulation experiments to validate
our analysis, and to investigate several drawbacks of the
window-based flow control mechanism. In Section IV, we
discuss the ECN mechanism, and how it can be incorporated
into the window-based flow control mechanism in TCP/IP
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Fig. 1: Analytic model.

networks. Finally we conclude this paper and discuss future
works in Section V.

II. Analysis of Window-Based Flow Control
Mechanism

In this section, we present our control theoretical analysis
of the window-based flow control mechanism based on TCP
Vegas. Refer to [5] for more detail.

A. Analytic Model
We first explain the congestion avoidance mechanism of
TCP Vegas. For detailed explanation, refer to [4]. In TCP
Vegas, each source host maintains� , which is a minimum
round-trip time obtained when the network is not congested.
That is, the minimum round-trip time� corresponds to the
sum of all propagation delays and processing delays at the
routers. Hereafter, we call the minimum round-trip time,
� , thepropagation delay for brevity. The source host is al-
lowed to emit packets of its current window-size (denoted by
�) per round-trip time. Therefore, its effective throughput
would be��� if there is no congestion in the network. Each
source host obtains the actual round-trip time by measur-
ing time duration between a transmission time of a packet
and arrival of its corresponding ACK packet. Let� be the
actual round-trip time measured at the source host, and�
be the number of packets the source host sent in the previ-
ous round-trip time. Its actual throughput is given by���.
TCP Vegas then computes the difference between expected
throughput and actual throughput as

� �
�

�
�

�

�
�

TCP Vegas changes its window size,�, according to rela-
tions among� and two threshold values,� and�. If � is
less than�, the window size is linearly increased by one
packet in the next round-trip time. If� is greater than�, the
window size is linearly decreased by one packet in the next
round-trip time. Otherwise, the window size is unchanged.

In this paper, we model the above-mentioned congestion
control mechanism of TCP Vegas as follows. Figure 1 de-
picts our analytic model used throughout this paper. The
number� of source hosts are connected to corresponding
destination hosts through a single bottleneck router. TCP
Vegas changes its window size once every round-trip time.
We therefore consider the system as a discrete-time model,
where each time slot corresponds to the round-trip time.
Note that since the round-trip time changes as the network
status changes, the length of one slot is not fixed in our
model.

Let ���	� be the window size of the source host
 �� �

 � �� at slot 	. This indicates that the source host

can inject���	� packets into the network during slot	. We
assume that each source host always has packets to trans-
mit so that the number���	� of packets are sent at slot	.
Let ��	� be the number of packets queued in the router’s
buffer at slot	, and� be the buffer size of the router. At the
router, all packets coming from source hosts are processed
in a FIFO (First-In First-Out) manner; that is, all packets are
first queued in the single buffer, and then transmitted onto
the output link in order. We denote the bandwidth of the
router (i.e., the processing speed of the router or the band-
width of the output link) by
. Note that���	� (the window
size),��	� (the number of packets in the router’s buffer), and
� (the buffer size) are represented in units of packets.

In a round-trip time, TCP Vegas allows the source host
consume the bandwidth being worth of its given window
size. Provided that round-trip times of all connections are
equal, the number of packets in the buffer at slot	��, ��	�
��, is given by the following equation.

��	 � �� � ������	�

��
���

���	��
 ��	�� 
�� ���

where��	� denotes the round-trip time at slot	.
TCP Vegas changes its window size based on the mea-

sured round-trip time. By letting��	� be the round-trip time
observed at the source host
 at slot	, the difference be-
tween the expected throughput and the actual throughput,
��	�, is computed as

��	� �
���	�

�
�

���	�

��	�
� (1)

where� is the round-trip time when there is no waiting pack-
ets in the router’s buffer. The round-trip time,��	�, is deter-
mined by� and the number of packets in the buffer; Namely,

��	� � � �
��	�



�

TCP Vegas linearly increases or decreases its window size
based on��	�. The window size of the source host
 at slot
	 � �, ���	 � ��, is determined as

���	 � �� �

��
�

���	� � � if ��	� � �
���	�� � if ��	� � �
���	� otherwise

� (2)



In the above equation, two threshold values,� and�, are
control parameters at the source host, which specify the
amount of excess packets the source host is permitted to
send in a round-trip time. However, we modify Eq. (2) as
follows.

���	 � �� � ��	����	� � Æ�� � ��	��� 
� (3)

whereÆ is a control parameter that determines the amount
of increase/decrease of the window size in a round-trip time.
The purpose of introducingÆ is not only for enabling appli-
cation of a control theory, but also for improving transient
performance. In [6], it has been reported that fairness among
connections cannot be satisfied when��	� lies in ��� ��.
In our analytic model, we therefore unify both� and� in
Eq. (2) into a single one,�, as in Eq. (3). With this mod-
ification, fairness among connections can be improved [6].
Intuitively, � controls the number of on-the-fly packets in
the network for each connection.

B. Stability Analysis
For simplicity, we assume that the initial window sizes of all
source hosts are equal, and that all source hosts change their
window sizes according to Eq. (3). The number of packets
in the router’s buffer at slot	 � �, ��	 � ��, is given by

��	 � �� � ������	�� ��	� �
 ��	�� 
�� ��� (4)

where��	� � ���	� �� � 
 � ��.
Let ��, ��, and�� be the fixed points of��	�, ��	�, and

��	�, respectively. By using Eqs. (1), (3), and (4), and as-
suming��	� � � in Eq. (3),��, ��, and�� can be obtained
as follows.

�� � �

�

 � ��

�

�
(5)

�� � ��� (6)

�� � � (7)

Since��	� is given by a non-linear equation, we linearize
it around the fixed point. Let��	� be the difference from the
fixed point, which is defined by

��	� �

�
��	� � ��

��	�� ��

�
�

��	 � �� is given by

��	 � �� � ���	� (8)

where

� �

�
�� Æ

�
� �Æ

������� � �Æ
��������
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�
�

In the system defined by Eqs. (1), (3), and (4), the fixed
point ���� ��� is locally exponentially stable when the roots
of the characteristic equation,�� �� � �� 
�, satisfy���� � �.
Note that the characteristic equation is given by

���� � ������ � 
� (9)
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Fig. 2: Stable behavior (Æ � 
�
, 
 � 

 packet/ms,� �
�
, � � � ms,� � � packet).

Since the characteristic equation,����, is quadratic, this
condition is equivalent to the following inequalities.

���� � 
� ����� � 
� ���
�� � �

That is, the fixed point of the system,���� ���, is locally
exponentially stable if and only if the following inequalities
hold.

Æ � 
 (10)
Æ�
 � ���

�
 � ����
� 
 � 
 (11)


Æ

�
 � ����
� � (12)

III. Simulation Results
As have been mentioned in [7], one drawback of the
window-based flow control mechanism based on TCP Ve-
gas is its incapability to measure the propagation delay ex-
actly. Namely, the congestion avoidance mechanism of TCP
Vegas relies on the assumption that the propagation delay
(i.e., the round-trip time without any queueing delay at the
router) is known in advance. This assumption is valid if all
routers in the network have separate output buffers for dif-
ferent connections, or if the offered traffic load is low so that
no packets are built up at the router’s buffer. However, these
are rarely the case in real networks. As we will demon-
strate later, inaccurate measurement of the propagation de-
lay causes unfairness among connections.

Another drawback of the window-based flow control
mechanism based on TCP Vegas is its lack of scalability
regarding the number of connections. Namely, the num-
ber of packets in the router’s buffer in steady state is given
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Fig. 3: Unstable behavior (Æ � ��
, 
 � 

 packet/ms,
� � �
, � � � ms,� � � packet).

by Eq. (6). It indicates that the number of packets in the
router’s buffer linearly increases as the number of connec-
tions,� , increases. If the number of connections gets ex-
tremely large, the number of packets in the buffer becomes
quite large. So it does not operate correctly unless either
a great amount of buffer is provided or� is set to be quite
small [5].

In what follows, we present several simulation results for
the window-based flow control mechanism based on TCP
Vegas. The simulation model is equivalent to the analytic
model shown in Fig. 1. We have implemented the window-
based flow control mechanism based on TCP Vegas on the
ns (Network Simulator) package. The packet size is fixed
at 1,000 bytes, the number of connections,� , is 10, and
the control parameterÆ is changed to 0.4, 2.0, and 3.0. For
other control parameters, following parameters are used: the
router’s bandwidth,
, is set to 20 packet/ms, the propa-
gation delay,� , is 1 ms, and the control parameter,�, is
3 packet.

In Figs. 2 and 3, we first show simulation results for
Æ � 
�
 and Æ � ��
, each of which presents stable and
unstable behavior of the window-based flow control mech-
anism based on TCP Vegas. These figures show dynamical
behaviors of the window size of each connection and the
number of packets in the router’s buffer. One can find that
Fig. 2 (stable behavior) shows the slight oscillation of both
the window size and the number of packets in the router’s
buffer. This is caused by the disturbance in measurement
of the round-trip time (e.g., variation in processing delays at
both TCP and IP layers and timer granularity of the source
host). Thus, a smaller value ofÆ would be appropriate
for achieving a better stability. Figure 3 (unstable behav-
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Fig. 4: Case of appropriateÆ (Æ � 
��, 
 � 

 packet/ms,
� � �
, � � � ms,� � � packet).

ior) shows the drastic oscillation of the window size and the
number of packets in the buffer. These figures suggest the
validity of our stability analysis presented in Section II-B.

We next show the case of appropriate value ofÆ in Fig. 4,
whereÆ is set to 0.4. This figure shows the more stable oper-
ation than Fig. 2. However, it should be noted that fairness
among connections is not fully satisfied. This problem is
caused by the drawback of the window-based flow control
mechanism based on TCP Vegas as have discussed above —
incapability to measure the propagation delay exactly.

This problem becomes more apparent and has a serious
impact when source hosts begin their data transmissions at
different times. In Fig. 5, each connection is activated every
20 ms. This figure shows that the window size of the source
host 10 is stabilized at 22 packets whereas that of the source
host 1 at 6 packets, indicating severe unfairness among con-
nections. To illustrate the cause of this problem clearly, the
estimated propagation delays of all source hosts are shown
in Fig. 6.

One can find that the estimated propagation delays range
from 1 ms to 3.7 ms. The reason of the propagation delay of
the source host 10 being larger than the source host 1 can be
explained as follows. When the source host 1 is activated,
there is no packet in the router’s buffer. So it is able to mea-
sure the propagation delay accurately. However, when the
source host 10 starts, approximately 40 packets are queued
in the router’s buffer. Thus, the propagation delay seen by
the source host 10 is the actual propagation delayplus the
queueing delay for these packets. As our analysis suggests
in Eq. (5), the window size in steady state is a linear func-
tion of the propagation delay. Hence, the difference in the
estimated propagation delay directly affects the difference
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in throughput.

IV. ECN (Explicit Congestion Notification) in
TCP Vegas

An ECN (Explicit Congestion Notification) is a mechanism
to explicitly notify source hosts of congestion occurrence
in the network. Several variants of ECN mechanisms have
been used in various congestion control mechanisms [7].
For instance, the DECbit congestion avoidance scheme uses
an ECN bit in the header of data packets. In ATM networks,
an EFCI (Explicit Forward Congestion Indication) bit in the
header of data cells and a CI (Congestion Indication) bit of
RM (Resource Management) cells are used. ECN mecha-
nisms can be implemented in TCP/IP networks in several
ways. In [8], ICMP Source Quench message is defined for
conveying congestion information from the congested router
to source hosts. One-bit use of the DS-byte in the differen-
tiated service architecture has been proposed in [9].
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Fig. 7: Case of staggered activation with ECN mechanism
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� � � packet).

According to [9], an example implementation of the ECN
mechanism in TCP/IP networks is as follows. A one-bit in
the header of the data packet is reserved for the ECN bit. The
router in the network uses the ECN bit for notifying source
hosts of its incipient congestion. The router computes the
average number of packets in the buffer. If it exceeds a
threshold value (e.g.,� % of the buffer capacity), the router
sets the ECN bits of all arriving packets. This information
is then carried to source hosts via corresponding destination
hosts as the ACK packet with the ECN bit set. The source
host responds to the ECN message by, for example, reduc-
ing its window size as in the case of packet losses [7]. The
advantage of the ECN mechanism is that unnecessary packet
losses can be prevented if source hosts respond to the ECN
message appropriately. In [7], it has been reported that the
ECN mechanism can avoid unnecessary packet delays for
low-bandwidth and delay-sensitive TCP connections. It has
also been reported that another advantage of the ECN mech-
anism is that the source host can detect congestion rapidly
regardless of coarse granularity of the TCP’s timer.

The ECN mechanism has a possibility to solve drawbacks
of the window-based flow control mechanism based on TCP
Vegas. When the ECN message is received by the source
host, it implies that the control algorithm works inappropri-
ately. In this case, the source host should throttle its window
size. However, the problem is how much of the window size
should be reduced by receipt of the ECN message. One-bit
information of the ECN message is apparently insufficient to
fine control of the window size. We therefore use the prob-
abilistic number of ECN messages. More specifically, the
source host counts the number of received ECN messages,
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��, in the last number�� of ACK packets. It then computes
the ratio of the ECN messages at slot	, ��	�, as

��	� �
��

��

� 
 � ��	� � ��

If ��	� is close to 1, it suggests that the network is heav-
ily congested so that the window size should be reduced
quickly. On the contrary, if��	� is close to 0, the network is
lightly congested so that the window size should be reduced
slightly. Thus, the controller function of the window-based
flow control mechanism given in Eq. (3) is changed as

���	 � �� � ��	����	� � Æ�� � ��	�� � ���	���	�� 
��

Note that the objective of the above controller is to minimize
the difference between� and��	� and to minimize��	�.

We finally demonstrate how the drawbacks of the
window-based flow control mechanism are solved by intro-
duction of the ECN mechanism. Figures 7 and 8 show simu-
lation results when the ECN mechanism is used. In this case,
the router marks the ECN bit in the packet header whenever
the number of packets in the buffer is over 50 packets. And
the source host changes its window size according to the
above equation. The number of ACK packets,��, which is
used to compute the probabilistic number of ECN messages,
is set to 10. These figures correspond to Figs. 5 and 6, where
the ECN mechanism is not used. It can be found from Fig. 7
that fairness among connections is dramatically improved
compared with Fig. 5. Note that performance improvement
in fairness is mostly resulted from the probabilistic number
of ECN messages,��	�. Let us consider a situation where
a source host happens to gain a much larger window size
than others due to inaccurate estimation of the propagation
delay. In this case, it receives more ECN messages because
of our probabilistic approach. It therefore decreases its win-
dow size more quickly than others. Consequently, unfair-
ness among connection is considerably relieved.

V. Conclusion
In this paper, we have focused on a window-based flow con-
trol mechanism based on the congestion avoidance mech-
anism of TCP Vegas, and have analyzed its stability us-
ing control theory. We have performed simulation experi-
ments and have shown its several drawbacks. To overcome

these drawbacks, we have investigated how the ECN mech-
anism can be incorporated into the window-based flow con-
trol mechanism. We have also demonstrated its effectiveness
through simulation experiments.

As a future work, we should extend our analysis to more
realistic networks. For example, interference between dif-
ferent types of traffic should be considered. Since both of
TCP and UDP traffic co-exist in real TCP/IP networks, per-
formance of a congestion control mechanism for TCP traffic
must be affected by existence of UDP traffic.
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