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Abstract— In this paper, we propose a network model partition
method called QD-PART (Quasi-Dynamic network model PARTi-
tion method) for accelerating parallel network simulation. The
key of QD-PART is to utilize the fact that a network simulation
is typically repeated several times with the same parameter set for
estimating the confidence interval of steady state measures. QD-
PART gradually optimizes partition of a network model based
on past simulation results such as the total simulation time,
CPU usage of computing resources, and traffic intensity (i.e.,
the number of packets transmitted) of each link. At the end of
each parallel simulation run, QD-PART re-partitions the network
model based on such information aiming at minimizing com-
munication overhead among computing resources and balancing
load of sub-network models executed on computing resources.
Through several experiments using a parallel-distributed network
simulator, we show how parallel network simulation can be
accelerated using QD-PART by gradually improving the network
model partition.

keywords: Parallel Simulation, Large-Scale Network, Net-
work Model Partition Method

I. I NTRODUCTION

In recent years, demand for a technique to evaluate the
performance of large-scale networks has heightened along with
the increasing size and complexity of the Internet [1], [2]. The
Internet today is a best-effort network, and communication
quality between end nodes is in no way guaranteed. Of course,
robustness to some extent has been achieved by dynamic
routing mechanisms such as OSPF and BGP even in the
current Internet. However, the Internet itself is indispensable
as society’s communication infrastructure, so a technique to
evaluate the performance of large-scale networks is in strong
demand to ensure the reliability, safety, and robustness of
networks, to allow future network expandability and design,
and to assess the impact of terrorism and natural disasters.

However, conventional techniques to evaluate the perfor-
mance of a network such as mathematical analysis techniques
and simulation techniques are directed toward relatively small-
scale networks. As an example, queuing theory [3] has been
widely used in performance evaluation of conventional com-
puter networks, but it is not readily applied to performance
evaluation of the large-scale and complex Internet. When
rigorously analyzing the performance of a network using
queuing theory, the number of states for analysis increases
exponentially according to the increase in the number of nodes
connected to the network.

Simulation techniques, as opposed to numerical analysis
techniques, allow performance evaluation of complex net-
works [4]. Performance evaluation of medium-scale networks
in particular has become possible through the increasing
speeds and capacities of computers in recent years. How-
ever, communication protocols for the Internet are extremely
complex, so massive computer resources are required for
simulation of networks, and simulation of large-scale networks
is still difficult. The majority of network simulators widely
used today simulate behavior at a packet level, so they use
an event-driven architecture. A technique for faster speed of
network simulators operating on a single computer has also
been proposed [5], although a different approach is needed to
simulate a large-scale network.

Research with regard to parallel simulations as a technology
to allow simulation of large-scale networks has been conducted
in recent years [6]–[8]. Construction of relatively inexpensive
cluster computers has become easier through the faster speeds
and lower prices of desktop computers and the spread of high-
speed network interfaces such as Gigabit Ethernet. In addition,
Grid computing using a wide-area network to integrate com-
puter resources around the world has also attracted attention.

However, the majority of network simulators have an event-
driven architecture, so parallelization of network simulators is
difficult. The execution speed of parallel simulation is heavily
affected by partitioning of a network model; i.e., the total
simulation time depends on how a network model is divided
into multiple sub-network models, each of which will be
assigned to a different computing resource.

In this paper, we propose a network model partition method
called QD-PART (Quasi-Dynamic network model PARTition
method) for accelerating parallel network simulation. The key
of QD-PART is to utilize the fact that a network simulation is
typically repeated several times with the same parameter set
for estimating the confidence interval of steady state measures.
Namely, QD-PART gradually optimizes partition of a network
model based on past simulation results such as the total sim-
ulation time, CPU usage of computing resources, and traffic
intensity (i.e., the number of packets transmitted) of each link.
At the end of each parallel simulation run, QD-PART re-
partitions the network model based on such information aim-
ing at minimizing communication overhead among computing
resources and balancing load of sub-network models executed
on computing resources.



The structure of this paper is as follows. First, Section II
describes related work regarding network model partition
methods. Section III explains QD-PART, our network model
partition algorithm. Section IV illustrates an example partition
of a network model using QD-PART. In Section V, we present
several experimental results of QD-PART, showing how par-
allel network simulation can be accelerated by gradually
improving the network model partition. Finally, Section VI
concludes this paper and discusses future research topics.

II. RELATED WORK

In the literature, there have been several studies on a
network model partition method for accelerating parallel net-
work simulation. In [9], the authors have proposed a network
model partition method for cluster computers. The key of
the proposed partition method is to view a network model
as a graph, and divides it into several sub-graphs using a
simple min-cut algorithm [10]. The weight of each edge is
assigned as the traffic intensity of the corresponding link. The
traffic intensity is estimated using TCP steady-state analysis.
Although the proposed partition method tries to minimize
communication overhead among computing resources, the
partition result might not be good since it simply uses rough
estimation of the traffic intensity.

In [11], the authors have proposed a benchmark-based
network model partition method for cluster computers. The
proposed partition algorithm utilizes a graph partitioning tool
called METIS [12] for dividing a network model into several
sub-network models. Similar to [9], the proposed partition
algorithm utilizes simple estimation of traffic intensity of each
link, so that the partition result might not be good.

III. QUASI-DYNAMIC NETWORK MODEL PARTITION

METHOD

In this section, we first explain the basic idea of our network
model partition method called QD-PART (Quasi-Dynamic
network model PARTition method), followed by its algorithm
description.

A. Basic Idea

The key of QD-PART is to utilize the fact that a network
simulation is typically repeated multiple times with the same
parameter set for estimating the confidence interval of steady
state measures.

In many network simulation studies, performance analysts
generally need to measure statistics, such as throughput, mean
and variance of delay, and packet loss rate, in steady state or
transient state [13]. In particular, statistics in steady state are
generally of great concern. Since most packet-level simulation
uses a Monte Carlo simulation technique and the simulation
time is finite, measured statistics in steady state cannot be
a precise estimate of real statistics. Hence, for validating
accuracy of measured statistics, the confidence interval of
steady state measures are typically calculated by sampling
independent steady state measures.

There are several techniques for estimating the confidence
interval of steady state measures, such as the independent
replications method, the batch means method, the autore-
gressive method, the spectrum analysis, and the regenerative
method [13]. In theory, advanced techniques, such as the au-
toregressive method and the regenerative method, are effective
for estimating the confidence interval since the simulation time
required can be much smaller than that of other estimation
techniques. However, their application are not straightforward
since, for instance, choosing regenerating point needs careful
consideration. In practice, the simplest technique of the inde-
pendent replications method has been widely used in many
network simulation studies. In the independent replications
method, for obtaining samples of steady state measures, a
network simulation is repeated multiple times with the same
parameter set but with a different seed for the random number
generator.

In QD-PART, we utilize this — a network simulation is
typically repeated several times with the same parameter set
for estimating the confidence interval of steady state measures.
Namely, QD-PART gradually optimizes partition of a network
model based on past simulation results such as the total sim-
ulation time, CPU usage of computing resources, and traffic
intensity (i.e., the number of packets transmitted) of each link.
At the end of each parallel simulation run, QD-PART re-
partitions the network model based on such information aim-
ing at minimizing communication overhead among computing
resources and balancing load of sub-network models executed
on computing resources.

B. Algorithm

First, we define several terms used throughout this paper
(see Fig. 1);node is either a host or router in simulation,
link is a transmission link connecting nodes in simulation,
and flow is a stream of packets sent from a source node to
a destination node. A set of nodes, links, and flows with their
attributes (i.e., system and control parameters) to be simulated
is callednetwork model. A network model partition method
splits a network model into two or moresub-network models.
Sub-network models are assigned tocomputing resources,
each of which runs a parallel network simulator and performs
simulation by coordinating with other computing resources.
A network device between computing resources is called
networking resource.

In QD-PART, a network model is first represented as an
undirected graphG = (V, E), where V = {1, 2, . . .} and
E = {1, 2, . . .}. Vertices inV correspond to nodes (hosts or
router), and edges inE correspond to links between nodes.
The weight of edge(i, j) is denoted byw(i, j). Furthermore,
the total number of partitions of the network model (i.e., the
number of sub-network models) isN . Also, let Tk be the
total simulation time of thek-th parallel simulation,Pk(n)
be the CPU usage of the computing resourcen in the k-th
parallel simulation, andlk(i, j) be the traffic intensity of a
link corresponding to edge(i, j).

The algorithm of QD-PART is as follows.
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Fig. 1: Network model partition overview

1) Make initial partition
Before running the first simulation, we have no infor-
mation on the traffic intensity of each link. Hence, the
initial partition is determined by assuming that all edges
have the same traffic intensity. Namely, weightw(i, j)
of edge(i, j) is defined simply as

w(i, j) =
1

τ(i, j)α
, (1)

where τ(i, j) is the propagation delay of a link cor-
responding to edge(i, j), and α(> 0) is a control
parameter determining sensitivity of the link propagation
delay on a network model partition.
A graph partition algorithm [14] is applied toG, which
results in N sub-graphsG1, . . . , GN . TheseN sub-
network models are assigned toN computing resources,
and parallel network simulation is performed. At the end
of simulation, several results such as the total simulation
time T1, CPU usage of each computing resourceP1(n),
and traffic intensity of each linkl1(i, j) are obtained.

2) Make second partition based on measured traffic inten-
sity
Since we now have several statistics of the first parallel
simulation such as the total simulation time, the CPU
usage of computing resources, and the traffic intensity
of each link, a better partition than the initial one can
be determined.
It is known that the communication overhead among
computing resources is almost proportional to the num-
ber of simulation events exchanged between computing
resources. In a packet-level network simulation, almost
all simulation events are regarding packet processing.
Hence, the communication overhead among computing

resources should be almost proportional to the number of
packets exchanged between nodes in different partitions.
The second partition is therefore determined by taking
account of the traffic intensityl1(i, j). More specifically,
weight w(i, j) of edge(i, j) is redefined as

w(i, j) =
l1(i, j)
τ(i, j)α

. (2)

Similar to the previous step, a graph partition algo-
rithm [14] is applied toG with redefined edge weights,
resulting inN sub-graphsG1, . . . , GN . TheseN sub-
network models are again assigned toN computing
resources, and the second parallel network simulation
is performed. At the end of simulation, several statistics
such as the total simulation timeT2, CPU usage of a
computing resourceP2(n), and the traffic intensity of
each linkl2(i, j) are obtained.

3) Improve partition using measured CPU usage
In subsequent parallel simulations, a network model
partition G1, . . . , GN is gradually improved based on
the measured statistics of past simulations. Namely, in
thek-th parallel simulation, a network model partition is
determined by modifying the partition in the(k − 1)-th
parallel simulation.
The idea for improving the previous partition is to move
a node from a more loaded computing resource to a less
loaded one. For this purpose, CPU usage of computing
resources in the previous simulation,Pk−1(n), are ex-
amined, and the most loaded computing resource (i.e.,
one with the largestPk−1(n)) is identified. LetGn be
the most loaded sub-network model, andV ′(Gn) be a
subset of vertices inGn, which are connected to one
or more nodes in other sub-network models. Namely,
a node i in V ′(Gn) and a nodej in V (G − Gn)
are connected by edge(i, j). A node in V ′(Gn) is
randomly chosen, and it is moved to the other sub-
network model. By moving a node from a more loaded
computing resource to less loaded one, we expect that
load balancing among computing resources is improved,
possibly leading to a shorter total simulation time.
N sub-network modelsG1, . . . , GN are assigned toN
computing resources, and thek-th parallel network sim-
ulation is performed. At the end of simulation, several
statistics such as the total simulation timeTk, CPU usage
of a computing resourcePk(n), and the traffic intensity
of each linklk(i, j) are obtained.
If the total simulation timeTk is shorter than the
previous parallel simulationTk−1, step (3) is repeated.
Otherwise, the network model partition is fixed at that of
the previous simulation, which results in the least total
simulation time.

IV. PARTITION EXAMPLE

In this section, an example partition of a network model
with N = 2 (i.e., partition into two sub-network models) using
QD-PART is presented.
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Fig. 2: Initial partition is determined by assuming that all
edges have the same traffic intensity. Dark-gray nodes
are inG1, and light-gray nodes are inG2. Gray lines
represent crossing links.

Figure 2 shows an example network model, which is com-
posed of 20 nodes and 5 flows. In the figure, circles, thick
lines, and dotted lines with arrow heads represent nodes, links,
and flows, respectively.

1) Make initial partition
The initial partition is determined by assuming that
all edges have the same traffic intensity. By applying
a graph partition algorithm in [14], two sub-network
models,G1 andG2, are obtained.
Figure 2 shows the initial partition withN = 2. In
Fig. 2, dark-gray nodes represent nodes inG1, and
light-gray nodes represent nodes inG2. Gray lines
represent crossing links (i.e., links between two sub-
network models ofG1 andG2).
Two sub-network models,G1 and G2, are assigned to
two computing resources, parallel network simulation is
performed, and several statistics are measured.

2) Make second partition based on measured traffic inten-
sity
The second partition is determined by taking account
of the traffic intensity measured in the first simulation.
Figure 3 shows the result of the second partition. In this
figure, the number shown at each edge represents the
traffic intensity (i.e., the number of packets transmitted)
of the corresponding link. With edge weights defined by
Eq. (2), a graph partition algorithm [14] is applied toG,
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Fig. 3: The second partition is determined by taking account
of the traffic intensity measured in the first simulation.
The number at an edge is the traffic intensity.

resulting in two sub-network modelsG1 andG2. Similar
to Fig. 2, a network model partition is represented by
the color of nodes and links.
In the second partition, the network model is split at
edges (1, 2), (2, 9), and (6, 10) since these edges
have relatively small weights (i.e., relatively small traffic
intensity).

3) Improve partition using measured CPU usage
A network model partition is gradually improved based
on the measured statistics of past simulations. Suppose
that in the second simulation (Fig. 3), the computing
resource processingG2 is more loaded than that pro-
cessingG1 (i.e., P2(1) < P2(2)). Hence, in this step, a
node inG2 is moved toG1. From a subset of vertices
in G2 connected toG1, V ′(G2) = {1, 9, 10}, a node is
randomly chosen. In Fig. 3, the node 1 is chosen, and
moved toG1. The resulting partition is shown in Fig. 4.
Two refined sub-network models,G1 and G2, are as-
signed to two computing resources, parallel network
simulation is performed. This step is repeated until
moving node does not contribute to shorten the total
simulation time.

V. EXPERIMENTS

In this section, we evaluate the performance of QD-PART
through several experiments using a parallel-distributed net-
work simulator.
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Fig. 4: A network model partition is gradually improved based
on the measured statistics of past simulations. Since
the computing resource processingG2 is more loaded
(i.e., P2(1) < P2(2)), the node 1 inG2 is moved to
G1.

In our experiments, we use the following devices and
software: two identical computers (Intel Xeon 2.4GHz pro-
cessor with 1,024 Mbyte memory running Linux 2.4.30 and
PDNS [15] version 2.27-v1a) as computing resources and a
gigabit Ethernet switch as a networking resource.

We have implemented a network model partition software,
which translates a NS2 [16] simulation script into multiple
PDNS simulation scripts using QD-PART method.

A network model is generated as a random graph with
20 nodes. We consider two cases: homogeneous case and
heterogeneous case. In the homogeneous case, the bandwidth
and the propagation delay of each link is equally set to 1
[Mbit/s] and 1 [ms], respectively. In the heterogeneous case,
the bandwidth and the propagation delay of each link is
randomly set to values between 0 and 1 [Mbit/s], and between
0 and 1 [ms], respectively. Either two or ten TCP connections
are generated between randomly-chosen nodes. All routers are
DropTail with 100 [packet] buffer.

In what follows, due to space limitation, only experiment
results withα = 0 are presented.

Figure 5 shows the total simulation time at each simulation
run for two TCP connections and ten TCP connections in the
homogeneous case. This figure shows that using QD-PART
the total simulation time is gradually reduced. One can find
from this figure that the total simulation time is converged
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two TCP connections and ten TCP connections in the
homogeneous case.
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Fig. 6: Total simulation time vs. number of simulation run for
two TCP connections and ten TCP connections in the
heterogeneous case.

by the 8-th simulation. Regardless of the number of TCP
connections, the total simulation time is significantly reduced
from the initial partition.

Figure 6 shows the total simulation time at each simulation
run for two TCP connections and ten TCP connections in
the heterogeneous case. This figure shows QD-PART is quite
effective particularly in the heterogeneous case. Also this
figure shows that the total simulation time is converged at
the 7-th simulation.

The reason of QD-PART’s effectiveness in the heteroge-
neous case can be explained by heterogeneity in the bandwidth
and the propagation delay of links. If the bandwidth and/or



the propagation delay of all links are almost the same, existing
graph partition algorithms such as [14] are effective. However,
if the bandwidth and/or the propagation delay of links are quite
different with each other, those graph partition algorithms are
not good for finding a partition. This is because the traffic
intensity is difficult to estimate and computational burden of
a sub-network model is difficult to predict. Since QD-PART
uses the measured statistics of past simulation, it can gradually
improve the partition, resulting in a shorter total simulation
time.

VI. CONCLUSION

In this paper, we propose a network model partition method
called QD-PART for accelerating parallel network simulation.
QD-PART utilizes the fact that a network simulation is typi-
cally repeated several times with the same parameter set for
estimating the confidence interval of steady state measures.
At the end of each parallel simulation run, QD-PART re-
partitions the network model based on past simulation results
such as the total simulation time, CPU usage of computing
resources, and traffic intensity (i.e., the number of packets
transmitted) of each link. Through several experiments using
the PDNS network simulator, we have shown that QD-PART
significantly reduces the total simulation time, in particular,
when the network model is heterogeneous.

We believe QD-PART have made an important step toward
realizing parallel simulation of large-scale networks, but there
remains several problems to be solved. Our future work
includes through performance evaluation of QD-PART (e.g.,
with other types of network models and more computing
resources) and tuning of its control parameterα. Also it
is important to extend QD-PART to support heterogeneous
computing resources and networking resources such as Grid
computing.
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