
Performance Evaluation of an Open-Source Implementation
of Content-Centric Networking

Ryo Nakamura and Hiroyuki Ohsaki
Department of Informatics

Graduate School of Science and Technology
Kwansei Gakuin University

Hyogo 669–1337, Japan
E-mail: {r-nakamura,ohsaki}@kwansei.ac.jp

Abstract—In this paper, we investigate the scalability of
CCNx, an open-source CCN (Content-Centric Networking) im-
plementation, in terms of the number of nodes. As performance
metrics, we measure the total throughput of content delivery,
the packet loss rate in the network, and the average content
delivery time. We also examine the performance bottleneck
of CCNx through system-wide profiling, which quantitatively
shows that per-packet digest-based authentication is the per-
formance bottleneck in CCNx. We therefore investigate how
the scalability of CCNx in terms of the number of nodes
can be improved by hardware offloading of Data-chunk digest
computation.

Keywords-CCN (Content-Centric Networking); CCNx; scal-
ability, hardware offloading

I. INTRODUCTION

In the recent years, Content-Centric Networking
(CCN) [1] has been under the spotlight as one of
the networks mainly focusing on the contents that are
transmitted and received (data-centric networks) instead
on the hosts that transmit and receive the contents (host-
centric networks). CCN adopts a request-and-response
communication model. In CCN, a unique identifier is
assigned to every content. The content request packet
(Interest packet) from a user is routed among CCN routers
using longest-prefix matching of the content identifier
to search for the location of the content. The content
discovered is delivered to the user as a response packet
(Data packet) by retracing the path of the request packet.

A CCN router has a buffer memory called CS (Content
Store), and it caches the forwarded Data packet in the buffer
memory. CCN routers on a network cache the forwarded
contents, and reuses data. When a CCN router receives
another Interest packet for the same content, it returns
the Data packet cached so that the amount of traffic on
network can be reduced and the content delivery time can
be shortened.

In the literature, the effectiveness of CCN has been
investigated mainly through simulation experiments. On the
contrary, a software implementation called CCNx [2] has
been developed as an open-source software, and a few

performance studies of CCN through experiments have been
performed.

However, scalability of CCN in terms of the number
of nodes has not been fully understood. For large-scale
deployment of CCN in real networks, as a communica-
tion infrastructure for various types of social activities, it
is crucial to clarify how the CCN architecture itself and
its components such as CCN routers and repositories are
scalable in terms of the number of nodes.

In this paper, we therefore investigate the scalability of
CCNx, one of major open-source CCN implementations, in
terms of the number of nodes (i.e., CCN routers and reposi-
tories) through experiments. Using virtualization technology,
a large-scale CCN network with dozens of nodes are con-
structed in a single physical computer. In our experiments,
contents stored in the repositories are repeatedly requested
from different entities for performance benchmarking. As
performance metrics, we measure the total throughput of
content delivery, the packet loss rate in the network, and
the average content delivery time. We also examine the
performance bottleneck of CCNx through system-wide pro-
filing, which quantitatively shows that per-packet digest-
based authentication is the performance bottleneck in CCNx.
We therefore investigate how the scalability of CCNx in
terms of the number of nodes can be improved by hardware
offloading of Data-chunk digest computation.

This paper is organized as follows. Section II introduces
previous works related to scalability of CCN and perfor-
mance studies using CCNx. Section III explains the method-
ology of our experiments such as hardware and software
used for experiments, workload generation, performance
metrics, and factors to be studied. Section IV presents exper-
iment results for addressing the scalability of CCNx in terms
of the number of nodes, including detailed examination
of the CCNx performance bottleneck through system-wide
profiling. Section V investigates how the scalability of CCN
can be improved with hardware offloading of Data-chunk
digest computation at CCN routers. Finally, Section VI
concludes this paper and discusses future works.

II. RELATED WORK

In [3], Perino et al. quantitatively discuss the scalability
of CCN routers to address whether an Internet-scale CCN
network can be realized with the latest technologies. Conse-
quently, the authors conclude that using the state-of-the-art
technologies for CCN routers, the CCN architecture could
scale to the size of the current ISP networks and CDNs
(Content Distribution Networks), but not to the size of the
current Internet.

In the literature, several simulation studies for investi-
gating the CCN performance have been performed. For
instance, in [4], Chiocchetti et al. address the scalability of
CCN in terms of the number of nodes by comparing simula-
tion times and memory usages when running simulations of
different network sizes. The authors show that the scalability
of CCN is mostly determined not by the number of nodes in
the network but by the number of contents in the network.

Several experimental performance evaluations of CCNx,
an open-source software implementation of CCN, have been
performed for measuring the end-to-end performance and
examining the performance bottleneck in CCN routers [5],
[6]. In [5], Yuan et al. measure the throughput and the
resource usage from experiments using CCNx in a small-
scale network. The authors show, to realize a CCN network
with 1 [Gbit/s] effective throughput, performance issues
of CCNx such as exact string matching in PIT (Pending
Interest Table) and CS (Content Store) lookups and longest-
prefix string matching in FIB (Forwarding Information Base)
lookup should be solved. On the contrary, in [6], Tang
measures the end-to-end performance of CCNx running in
a virtualization infrastructure called SAVI (Smart Applica-
tions on Virtual Infrastructure). The author shows that the
throughput of CCNx is increased by more than 12% by
optimizing the function for Data packet decoding called
ccn_skeleton_decode. However, in those studies, the
scalability of CCN in terms of the number of nodes has
not been addressed. Hence, it has not been understood
how the end-to-end performance of CCN (e.g., throughput
and content delivery time) is degraded as the number of
nodes in the network increases. In this paper, we therefore
experimentally investigate the scalability of CCNx in terms
of the network of nodes.

III. EXPERIMENT METHODOLOGY

In this paper, we investigate the scalability of CCNx in
terms of the number of nodes through experiments. In what
follows, we explain the methodology for our experiments.

We used the CCNx software version 0.8.2 running
on Gentoo GNU/Linux with 32-bit Linux Kernel version
3.15.10 and an Intel-based desktop computer (Core i7
2640M 2.80 [GHz] with 8 [Gbyte] memory). The clock
speed of the CPU was fixed at 2.80 [GHz] using cpufreq, the
CPU frequency scaling module in the standard Linux Kernel.

1

1 2 3 N - 1 N

repository

entity

CCN

router

2 3 N - 1 N

Figure 1. Linear network topology used in experiments (constructed on a
single physical computer using network virtualization)

We assume that multiple CCN router slices are constructed
on a single physical router using network virtualization. So,
2N ccnd daemons, which correspond to N CCN routers
and N repositories, were executed on the single physical
computer.

CS (Content Store) size of all CCN routers were equally
set to 10 [content]. Every ccnd daemons (i.e., CCN routers
and repositories) were assigned an unique IP address, which
was configured as the alias for the Ethernet interface of
the desktop computer. We used a simple linear network
topology shown in Fig. 1. In the linear network topology,
N CCN routers are connected in serial, and N repositories
are connected to respective CCN routers. In other words,
entries of FIBs in all CCN routers and repositories are
configured to construct the linear network topology. Every
virtual link among CCN routers and repositories was fixed at
1 [Gbit/s] with 0% packet loss using netem, a kernel module
for providing network emulation functionality.

Every repository was provided with a single unique con-
tent of 8 [Kbyte]; i.e., there were N contents with unique
content identifiers in the network. In our experiments, every
content was repeatedly requested from entities, each of
which was connected to a different CCN router. Specifically,
ith entity (1 ≤ i ≤ N) repeatedly issued Interest packets
to ith CCN router for all the contents in the network. For
workload (i.e., series of Interest packets) generation, we
developed a CCN request generator, which randomly sent
Interest packets encoded in the CCNB (CCN Binary) format
to specified CCN router’s face. The interval between succes-
sive Interest packet generation was given by the exponential
distribution with the mean 1/λ, where λ [content/s] is the
request rate.

As performance metrics, we used followings.
• Throughput

The number of successful content deliveries in the
network per a unit time. Note that our throughput
definition is for the entire network (i.e., network-level
throughput), rather than for every entity (i.e., end-to-
end throughput).

• Packet loss rate
The rate of Interest packet losses in the network, which
is defined as the ratio of the number of unsuccessful

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 5 10 15 20 25 30 35 40 45

to
ta

l t
hr

ou
gh

pu
t [

co
nt

en
t/s

]

the number of CCN routers N

λ=1 [request/s]
λ=2 [request/s]
λ=4 [request/s]
λ=6 [request/s]

(a) Total throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45

pa
ck

et
 lo

ss
 ra

tio

the number of CCN routers N

λ=1 [request/s]
λ=2 [request/s]
λ=4 [request/s]
λ=6 [request/s]

(b) Packet loss rate

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 5 10 15 20 25 30 35 40 45

co
nt

en
t d

el
iv

er
y

tim
e

[s
]

the number of CCN routers N

λ=1 [request/s]
λ=2 [request/s]
λ=4 [request/s]
λ=6 [request/s]

(c) Average content delivery time

Figure 2. Experiment results for different numbers of CCN routers

content deliveries to the number of total Interest packets
injected in the network.

• Average content delivery time
The average time elapsed since an entity sends an
Interest packet to the network by the time when the
entity receives the corresponding Data packet from the
network. Note that the average content delivery time is
the average of all successful content deliveries, which
do not include unsuccessful (e.g., lost or pending)
content deliveries.

We calculated those performance metrics from log files of
ccnd daemons. A single experiment was lasted for 300 [s],
and log files of ccnd daemons in the last 120 [s] were used

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 5 10 15 20 25 30 35 40 45

to
ta

l t
hr

ou
gh

pu
t [

co
nt

en
t/s

]

the number of CCN routers N

original
virtual offloading

(a) Total throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45

pa
ck

et
 lo

ss
 ra

tio

the number of CCN routers N

original
virtual offloading

(b) Packet loss rate

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 5 10 15 20 25 30 35 40 45

co
nt

en
t d

el
iv

er
y

tim
e

[s
]

the number of CCN routers N

original
virtual offloading

(c) Average content delivery time

Figure 3. Experiment results with/without virtual offloading for different
numbers of CCN routers

for measurement to ignore variability in transient state. For
every Interest packet generated from an entity, both times-
tamps of the Interest packet reception and the Data packet
transmission at the connected CCN router were extracted
from the log file of the corresponding ccnd daemon. From
all timestamps of both successful and unsuccessful content
deliveries, the throughput, the packet loss rate, and the aver-
age content delivery time were calculated. Experiments were
repeated for 10 times for a given condition, and the average
and its 95% confidence interval for every measurement were
calculated.

Table I
RESULT OF A SYSTEM-WIDE PROFILING WITH OPROFILE FOR N = 30

AND λ = 6 [CONTENT/S]

% image name app name symbol name
29.5 libcrypto.so.1.0.0 ccnd sha256 block data order()
3.35 ccnd ccnd ccn skeleton decode()
3.07 vmlinux ccnd sock poll()
2.50 ccnd ccnd siphash 2 4()
2.32 vmlinux ccnd tcp poll()

IV. EXPERIMENT RESULTS

Total throughput, packet loss rate, and the average content
delivery time when changing the number N of CCN routers
are shown in Fig. 2. In this figure, the request rate λ is varied
from 1 to 6 [content/s].

These results show that the throughput increases gently
rather than linearly when N exceeds around 30 for λ =
6 [content/s], that the packet loss rate and the average content
delivery time rapidly increase when N exceeds around 25
regardless of the request rate λ.

To investigate the performance bottleneck of CCNx
when, in particular, the network is large and the request
rate is high (i.e., N = 30 and λ = 6 [content/s]),
we performed a system-wide profiling using OProfile, a
system-wide statistical profiling tool for Linux. Table I
is a profiling result, which shows the five most time-
consuming functions in our experiment. This table indicates
that sha256_block_data_order function, which is a
part of OpenSSL library, utilizes approximately 30% of the
CPU time, which is apparently the performance bottleneck
in CCNx. In CCNx, sha256_block_data_order func-
tion is invoked for every Data packet reception to check the
validity of the Data chunk using digest-based authentication.

V. ESTIMATING THE IMPACT OF HARDWARE

OFFLOADING

One possible solution for improving the scalability of
CCNx, when a number of CCN router slices are constructed
on a single physical computer, is hardware offloading of such
CPU-intensive processings.

In what follows, we therefore investigate how the scal-
ability of CCNx in terms of the number of nodes can be
improved with hardware offloading of the Data-chunk digest
computation at CCN routers.

To estimate the performance improvement with hardware
offloading, processing of the Data-chunk digest computation
at all CCN routers are disabled by bypassing a function
invocation for ccn_digest_ContentObject from the
process_incoming_content function in the ccnd
dameon.

Total throughput, packet loss rate, and the average content
delivery time when changing the number N of CCN routers
are shown in Fig. 3. This figure shows the results of
experiments for λ = 6 [content/s]. Other conditions are the

same with those of Fig. 2 except that the Data-chunk digest
computation at all CCN routers are bypassed. In this figure,
lines labeled as virtual offloading show the results with
bypassed Data-chunk digest computation, and ones labeled
as original the results of the original CCNx. These results
show that, with hardware offloading of the Data-chunk digest
computation, improvements in the throughput and the packet
loss rate are modest (i.e., approximately 7% in both cases).
On the contrary, one can also find from these results that the
average content delivery time decreases by approximately
25%, which seems to be a significant reduction.

VI. CONCLUSION

In this paper, we have investigated the scalability of
CCNx, an open-source CCN implementation, in terms of
the number of nodes. As performance metrics, we have
measured the total throughput of content delivery, the packet
loss rate in the network, and the average content delivery
time. Consequently, we have shown that, in our experiments,
the CCNx performance degrades when the number of CCN
routers on a single physical computer exceeds around 25,
and that the performance bottleneck was the Data-chunk
digest computation at CCN routers.

As future work, we are planning to investigate the scala-
bility of CCNx in terms of the link speed and the number
of contents stored in the network.

ACKNOWLEDGEMENTS

This work was partly supported by JSPS KAKENHI Grant
Number 25280030.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in
Proceedings of the Fifth International Conference on emerging
Networking EXperiments and Technologies (CoNEXT 2009),
Dec. 2009, pp. 1–12.

[2] “Project CCNx,” http://www.ccnx.org.

[3] D. Perino and M. Varvello, “A reality check for content centric
networking,” in Proceedings of 2011 ACM SIGCOMM Work-
shop on Information-Centric Networking (ICN), Aug. 2011,
pp. 44–49.

[4] R. Chiocchetti, D. Rossi, and G. Rossini, “ccnSim: an highly
scalable CCN simulator,” in Proceedings of 2013 International
Conference on Communications (ICC), Jun. 2013, pp. 2309–
2314.

[5] H. Yuan, T. Song, and P. Crowley, “Scalable NDN forwarding:
Concepts, issues and principles,” in Proceedings of the 2012
21st International Conference on Computer Communications
and Networks (ICCCN), Jul. 2012, pp. 1–9.

[6] T. Tang, “High performance content centric networking on
virtual infrastructure,” Master’s thesis, University of Toronto,
2013.

