
On Automatic Parameter Configuration Mechanism
for Data Transfer Protocol GridFTP

Takeshi Ito, Hiroyuki Ohsaki and Makoto Imase

Graduate School of Information Science and Technology, Osaka University
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

E-mail: {t-itou; oosaki; imase}@ist.osaka-u.ac.jp

Abstract: In this paper, an automatic parameter configura-
tion mechanism for GridFTP is proposed. This mechanism
optimizes the number of parallel TCP connections by utiliz-
ing the analytic result of GridFTP throughput. The proposed
mechanism first measures the network status (e.g., the good-
put and the round-trip time of GridFTP data channels) at the
GridFTP client. Based on these measurement results, it adjusts
the number of parallel TCP connections for maximizing the
GridFTP goodput. Three operational modes, MI (Multiplica-
tive Increase), MI+ (Multiplicative Increase Plus), and AIMD
(Additive Increase and Multiplicative Decrease) are proposed
in this paper, each of which takes a different strategy for adjust-
ing the number of parallel TCP connections. Performance of
the proposed automatic parameter configuration mechanism is
evaluated through simulation experiments. This paper reveals
that the proposed automatic parameter configuration mecha-
nism significantly improves the performance of GridFTP.
Keywords: automatic parameter configuration mechanism,
Grid computing, GridFTP, parallel TCP connections

1. Introduction

In recent years, exploitation of the network in larger capacity
and in wider region has rapidly been in progress. In an experi-
mental testbed network, the bottleneck link bandwidth reaches
several Tbit/s and the transmission delay between end hosts
sometimes reaches a hundred msec. On the other hand, Grid
computing, which connects geographically-distributed multi-
ple computing resources through the network, has been re-
ceiving a great deal of attention [10]. Grid computing is ex-
pected to efficiently use computational resources that have not
been sufficiently utilized and to enable large-scale scientific
and engineering computation. However, such large-scale sci-
entific and engineering computation requires large file transfer
among computers through the network. For this purpose, there
has been increasing demand for a high-speed data transfer pro-
tocol that can effectively transfer large volume data.

TCP (Transmission Control Protocol) has been widely used
in the Internet to carry data traffic [14]. There are various ver-
sions of TCP, and the most popular ones are TCP version Reno
(TCP Reno) and its variants [13]. TCP Reno adjusts the packet
transfer rate to the network in the congestion avoidance phase
by implementing an AIMD (Additive Increase and Multiplica-
tive Decrease) window flow control. TCP Reno normally up-
dates its window size every round-trip time, but the window
size is halved when a packet loss is detected in the network.

Thus, TCP Reno drastically decreases its throughput due to a
small number of packet losses when the bandwidth delay prod-
uct of the network is large. Consequently, it has been pointed
out that TCP Reno has problems such as a difficulty in main-
taining higher throughput in a network with high packet loss
probability.

GridFTP has been proposed as a protocol to effectively
transfer large volume data in Grid computing [4] [12]. GridFTP
is designed to solve the existing TCP problems and has vari-
ous additional features for this purpose. These features in-
clude, for instance, parallel data transfer using multiple TCP
connections and automatic negotiation of TCP socket buffer
size. It is known that the effectiveness of GridFTP depends
largely on control parameter configuration such as the number
of parallel TCP connections [8] [16]. However, examination
has not been conducted sufficiently so far regarding how to
configure GridFTP control parameters. For example, although
a command is defined in the GridFTP protocol to specify the
number of parallel TCP connections between GridFTP server
and client, how to determine the number is not specified at all
in the GridFTP protocol.

There have been several studies concerning the configu-
ration method of the GridFTP control parameters [17] [11].
The literature [17] proposed the method to determine the re-
quired TCP socket buffer size by measuring the bandwidth de-
lay product between GridFTP server and client. This is real-
ized by extending the SBUF command in the GridFTP exten-
sion block mode. In [11], the optimal number of parallel TCP
connections and TCP socket buffer size are derived by using
a TCP fluid-flow model. However, to optimize the number of
parallel TCP connections in GridFTP based on the analysis re-
sult in [11], the required information such as round-trip time of
the TCP connections, the packet loss probability, and the avail-
able bandwidth of the network should be known in advance.
For this reason, the analysis result in [11] cannot be directly
applied to GridFTP in practice.

Therefore, this paper proposes a technique to optimize the
number of parallel TCP connections in GridFTP (i.e., auto-
matic parameter configuration mechanism) through the use of
the analysis result in [11]. The proposed technique first mea-
sures the network status (e.g., the goodput and the round-trip
time of GridFTP) at the GridFTP client. Then, it adjusts the
number of parallel TCP connections based on the above infor-
mation. Three operational modes (i.e., MI, MI+, and AIMD)
are considered in this paper, of which each has a different al-

gorithm to adjust the number of parallel TCP connections. Per-
formance of the proposed automatic parameter configuration
mechanism is then assessed by simulation experiments. As a
result, it is demonstrated that the proposed automatic param-
eter configuration mechanism substantially improves the per-
formance of GridFTP.

The structure of this paper is as follows. Section 2 provides
a general description of GridFTP as well as the explanation
on parallel data transfer that is one of the notable features of
GridFTP. Section 3 describes the design strategy and basic idea
of the automatic parameter configuration mechanism, and then
explains its algorithm in detail. Section 4 demonstrates the ef-
fectiveness of the automatic parameter configuration mecha-
nism through simulation experiments. Lastly, Section 5 sum-
marizes this paper and mentions future tasks.

2. GridFTP

GridFTP is a data transfer protocol, which is designed to effec-
tively transfer large volume data in Grid computing [4] [12].
GridFTP is an extension to FTP (File Transfer Protocol) [15]
[6] [9] that has been widely used, and was standardized in
OGF (The Open Grid Forum, formerly known as GGF (The
Global Grid Forum)) [3]. GridFTP, which uses TCP as its
transport layer communication protocol, is designed to solve
several problems of TCP. For example, besides the features of
the existing FTP, it has additional features such as automatic
negotiation of TCP socket buffer size, parallel data transfer,
third-party control of file transfer, partial file transfer, security,
and reliable data transfer [4] [12]. Most of these specific fea-
tures of GridFTP are realized by a new transfer mode called
extended block mode [4]. Currently, GridFTP server and client
software conforming to GridFTP version 1 (GridFTP v1) [4]
is implemented in the Globus Toolkit [1], which is the de facto
standard middleware for Grid computing. However, in this spe-
cific GridFTP implementation, the feature of the automatic ne-
gotiation of TCP socket buffer size is not implemented and
therefore a user must manually specify the number of parallel
TCP connections for parallel data transfer. In addition, OGF
has been discussing the problems with GridFTP v1 and has fin-
ished standardization of GridFTP v2 (version 2) as a solution
to these problems [12]. Additional features have been incorpo-
rated in GridFTP v2. These features relax several limitations of
the extended block mode in GridFTP v1, such that data trans-
fer is restricted to a single direction and unable to open/close
data channels in the midst of the data transfer. However, how
to configure the GridFTP control parameters regarding parallel
TCP connections has not been addressed even in the standard-
ization of GridFTP v2.

2.1 Parallel Data Transfer

Multiple TCP connections can be established in parallel in
GridFTP using OPTS RETR command (Fig. 1). With this mech-
anism, a single file can be transferred from a single server
through multiple TCP connections. Higher throughput can be
expected by aggregating multiple TCP connections in compar-
ison to using a single TCP connection [16].

This can be explained by the following reasons: (1) by
aggregating multiple TCP connections, larger bandwidth can
be gained in the TCP congestion avoidance phase than those
gained by other competing TCP connections [7]. This situa-

GridFTP
client

GridFTP
server

GridFTP
serverTCP connection

TCP socket
buffer

partial data
transfer

parallel file
transfer

parallelism

TCP socket
buffer size file

file

Grid network

Fig. 1. Parallel data transfer in GridFTP

tion results from the fact that, in the TCP congestion avoid-
ance phase, the AIMD window flow control is being executed,
and therefore aggregated multiple TCP connections can trans-
fer data more advantageously through the network with smaller
packet loss probability. (2) by aggregating multiple TCP con-
nections, the total TCP socket buffer size available to the file
transfer increases. Aggregation of N TCP connections can uti-
lize as N times TCP socket buffer size as that of a single
TCP connection. (3) by aggregating multiple TCP connections,
ramp-up time of the transfer rate in the TCP slow-start phase
is shortened. In the slow-start phase, the congestion window
doubles every round-trip time. For this reason, through the ag-
gregation of N TCP connections the speed of the transfer rate
increase becomes N times as fast as that of a TCP connection.

However, the throughput drops if the number of aggregate
TCP connections, N , becomes too large, since this may cause
the following situations: (1) the window size per TCP connec-
tion becomes smaller, so TCP timeout would frequently occur.
(2) the overhead required for the server to process a TCP pro-
tocol stack would increase. Therefore, the optimal number of
TCP connections, N , should be determined based on the net-
work status. Nevertheless, how to optimize the number of par-
allel TCP connections, N , in GridFTP has not sufficiently been
studied and still remains as an open issue.

3. Automatic Parameter Configuration
Mechanism for GridFTP

3.1 Design Strategy

First, the basic principles for designing automatic parameter
configuration mechanism for GridFTP is explained.

It is extremely important to provide the compatibility with
existing GridFTP in designing an automatic parameter config-
uration mechanism for GridFTP. GridFTP is implemented in
the Globus Toolkit and has been spreading rapidly in recent
years. Since a number of GridFTP servers have already been
in operation, it is preferable to realize the automatic parameter
configuration mechanism at the side of GridFTP client. Addi-
tionally, it is also favorable to establish the automatic param-
eter configuration mechanism without changing the existing
GridFTP protocol so as to interconnect with existing GridFTP
servers. If the automatic parameter configuration is executed
on the side of GridFTP client, it will be difficult to realize
the automatic parameter configuration in the third-party trans-
fer. Nonetheless, it should not be so problematic because most

of the transfers are executed between GridFTP servers and
clients.

Next, it is desirable that the automatic parameter configu-
ration mechanism for GridFTP can easily be installed in Grid
computing environment. Generally, Grid computing is featured
by the heterogeneity of computers and networks constituting
Grid. Therefore, the automatic parameter configuration mech-
anism needs to operate in various computer environments as
well as various network environments. For this reason, it is
preferable for the automatic parameter configuration mecha-
nism to be realized in the Grid middleware layer. In other
words, it is important for the automatic parameter configura-
tion mechanism to avoid using any functionality specific to
certain operating systems or network devices on the comput-
ers. Currently, most of the computers use the transport layer
communication protocol based on TCP version Reno. There-
fore, it is reasonable to assume the transport layer communica-
tion protocol to be TCP version Reno.

3.2 Basic Idea

In [11], the GridFTP goodput in steady state is approximately
derived as

G ' min

(

N W

R
,

N (1− p∗)

2 R

(

−3 +

√
6 + 21 p∗√

p∗

))

(1)

p∗ '
(

−2 +
2 B R

N
+

2

3

(

B R

N

)2
)

−1

(2)

where G is the GridFTP goodput, N is the number of parallel
TCP connections, W is the TCP socket buffer size for each
TCP connection, B is the bandwidth for the bottleneck link,
R is the round-trip time of the TCP connections, and p∗ is the
packet loss probability in the network. Equation (1) indicates
that the GridFTP goodput G is a convex function of the number
N of parallel TCP connections. Thus, the number of parallel
TCP connections, N , should be selected so as to maximize the
GridFTP goodput G. However, Eq. (1) also indicates that other
parameters such as the bottleneck link bandwidth B and the
TCP connection round-trip time R should be known in order
to determine the optimal number of N . This paper proposes a
mechanism to automatically configure the number of parallel
TCP connections on the side of GridFTP client by using the
analysis result as formulated in Eq. (1).

The basic idea is to search for the number of parallel TCP
connections, N , which maximizes Eq. (1) while measuring the
network status (i.e., the GridFTP goodput and the round-trip
time) on the side of GridFTP client. Equation (1) shows that the
GridFTP goodput is upper-bound by N W/R when the number
of parallel TCP connections, N , is too small. Therefore, the
idea is to firstly fix the number of parallel TCP connections,
N , and transfer a chunk of the file to be transferred and then
measure the goodput G as well as the round-trip time R on the
side of GridFTP client. Whether the current number of parallel
TCP connections, N , is larger than the optimal value can be
assessed by evaluating the relationship between G and N W/R
after transferring the chunk. Based on this result, the number
of parallel TCP connections, N , is updated, and another chunk

is then transferred. By repeating this procedure, the number of
parallel TCP connections can automatically be configured so
as to maximize the GridFTP goodput.

3.3 Measuring Network Status

This section explains how to measure the network status on
the side of GridFTP client. Note that the GridFTP goodput G,
the TCP socket buffer size W , and the round-trip time R, are
measurable in the middleware layer.

The GridFTP goodput can be calculated from the size of
a chunk and its transfer time, which is measured by transfer-
ring the chunk in the extended block mode [4]. Specifically, a
chunk is transferred by ERET or ESTO command in GridFTP’s
extended block mode while measuring its response time, T .
Since the response to ERET or ESTO command is returned when
the chunk transfer is completed [4], the GridFTP goodput can
be calculated as G = X/T from the size of the transferred
chunk, X , and the response time, T .

The TCP socket buffer size on the side of GridFTP client
can easily be obtained with the use of the socket API. GridFTP
has a feature to statically configure the socket buffer size (i.e.,
SBUF command) [4], and the TCP socket buffer size on the side
of the server can be obtained using this feature (more precisely,
it can be configured to the value specified by the GridFTP
client). Either the TCP socket buffer size of GridFTP client
or that of GridFTP server, which has the smaller value, will be
used as W in Eq. (1).

The round-trip time R can be obtained by measuring the
command response time in the GridFTP control channel.
Specifically, the response time Ri is measured when com-
mands such as USER, PASS, SITE, FEAT, TYPE, MODE, SIZE,
OPTS, NOOP, and PBSZ are executed by GridFTP client. It can
be assumed that GridFTP server would instantly complete the
process of these commands. For this reason, the round-trip
time R can be approximated by the response time to these
commands. More precisely, the running average of response
times; i.e., R ← R(1 − ρ) + Riρ is used as the estimated
round-trip time R where ρ(0 < ρ < 1) is a parameter. As
explained above, measurement is possible by a passive mea-
surement method that does not burden the network by using
just control packets or data packets of GridFTP.

On the other hand, among the variables that are included in
Eq. (1), measurement of the bottleneck link bandwidth B and
the packet loss probability p∗ in the network is difficult on the
side of GridFTP client. At present, it is difficult to measure
the bottleneck link bandwidth B or the packet loss probabil-
ity p∗ at the middleware layer using a passive measurement
method. Should features specific to certain operating systems
or network devices on the computers be used, it would be-
come possible to measure the bottleneck link bandwidth B or
the packet loss probability p∗. However, ease of installation
and/or deployment in the Grid computing environment should
be compromised. Likewise, even if the bottleneck link band-
width B or the packet loss probability p∗ could also be mea-
sured by employing an active measurement method (e.g., gen-
erating UDP/ICMP packet for measurement in the middleware
layer), the compatibility with existing GridFTP servers would
be impaired.

3.4 Adjusting the Number of Parallel TCP Connections

This section explains how to adjust the number of parallel TCP
connections, N , so as to maximize the GridFTP goodput after
measuring the network status. The automatic parameter con-
figuration mechanism proposed in this paper transfers chunks
of a file while measuring the GridFTP goodput, the TCP socket
buffer size W , and the round-trip time R. Based on this infor-
mation, the number of parallel TCP connections, N , will be ad-
justed. For adjusting the number of parallel TCP connections,
N , three operation modes as described below are discussed.
• MI (Multiplicative Increase) Mode

The MI mode starts from a small number of parallel TCP
connections, N , and multiplicatively increases it until the TCP
socket buffer size becomes not the bottleneck that impedes the
GridFTP goodput. In the following, let N0 denote the initial
value of the number of parallel TCP connections, γ(> 1)
denote a multiplicative increase factor, and η(0 < η ≤ 1)
denote a control parameter. The operation algorithm of the MI
mode is as follows.
(i).Initialize the number of parallel TCP connections.

N ← N0 (3)

(ii).Transfer a chunk and then measure the GridFTP goodput
G and the round-trip time R.

(iii).If the following inequality is satisfied, conjecture the TCP
socket buffer size is the bottleneck and proceed to the step
(iv). Otherwise, terminate the algorithm.

G > η × N W

R
(4)

(iv).Increase the number of parallel TCP connections as fol-
lows, and return to the step (ii).

N ← γ ×N (5)

•MI+ (Multiplicative Increase Plus) Mode
The MI+ mode starts from a small number of parallel TCP

connections, N , and multiplicatively increases it until the TCP
socket buffer size becomes not the bottleneck that impedes
the GridFTP goodput. It then optimizes the number of parallel
TCP connections, N , using the result of the steady state anal-
ysis (Eq. (1)). In the following, let N0 denote the initial value
of the number of parallel TCP connections, γ(> 1) denote a
multiplicative increase factor, and η(0 < η ≤ 1) denote a con-
trol parameter. The operation algorithm of the MI+ mode is as
follows.
(i).Initialize the number of parallel TCP connections.

N ← N0 (6)

(ii).Transfer the chunk, and then measure the GridFTP good-
put G and the round-trip time R.

(iii).If the following inequality is satisfied, conjecture the TCP
socket buffer size is the bottleneck and proceed to the step
(iv). Otherwise, proceed to the step (v).

G > η × N W

R
(7)

(iv).Increase the number of parallel TCP connections as fol-
lows, and return to the step (ii).

N ← γ ×N (8)

(v).Numerically derive the optimal value of the number of par-
allel TCP connections, which maximizes the second term
of the right-hand side of Eq. (1). Configure the number of
parallel TCP connections to that value and terminate the
algorithm.

•AIMD (Additive Increase and Multiplicative Decrease)
Mode

The AIMD mode starts from a small number of parallel TCP
connections, N , and additively increases it if the TCP socket
buffer size is the bottleneck or otherwise multiplicatively de-
crease it. In the following, let N0 denote the initial value of
the number of parallel TCP connections, α(> 1) denote an ad-
ditive increase factor, β(0 < β < 1) denote a multiplicative
decrease factor, and η(0 < η ≤ 1) denote a control parameter.
The operation algorithm of the AIMD mode is as follows.
(i).Initialize the number of parallel TCP connections.

N ← N0 (9)

(ii).Transfer the chunk and then measure the GridFTP goodput
G and the round-trip time R.

(iii).If the following inequality is satisfied, conjecture the TCP
socket buffer size is the bottleneck and proceed to the step
(iv). Otherwise, proceed to the step (v).

G > η × N W

R
(10)

(iv).Increase the number of parallel TCP connections as fol-
lows, and return to the step (ii).

N ← N + α (11)

(v).Decrease the number of parallel TCP connections as fol-
lows, and return to the step (ii).

N ← N(1− β) (12)

3.5 Adjusting the Chunk Size

For measuring the GridFTP goodput accurately and quickly, it
is important to appropriately determine the chunk size in each
chunk transfer.

For accelerating the adjustment of the number of parallel
TCP connections, it is desirable to keep the chunk size as small
as possible. However, if the chunk size is too small, the good-
put of each TCP connection cannot be measured accurately
because of TCP’s characteristics [5].

For solving this problem, the automatic parameter config-
uration mechanism predicts the GridFTP goodput of the next
chunk transfer, and dynamically configures the chunk size so
that the chunk transfer time becomes as fixed as possible.

In what follows, G(N) denotes the GridFTP goodput mea-
sured at the chunk transfer with N TCP connections, and N−k

the number of parallel TCP connections used for the k-th pre-
vious chunk transfer.

The automatic parameter configuration mechanism deter-
mines the chunk size X as follows. The automatic parameter
configuration mechanism predicts the GridFTP goodput of the
next chunk transfer to be G(N−1)G(N−1)/G(N−2) from the
ratio of past chunk transfers, and determine the chunk size as

X ← G(N−1)
G(N−1)

G(N−2)
∆, (13)

bottleneck link

file

10 [Gbyte]

B [Mbit/s]
τ [ms]

receiving
host

DropTail
 router

GridFTP
server

DropTail
 router 1 [ms]

sending
host

GridFTP
client

1000 [Mbit/s]
1 [ms]

1000 [Mbit/s]
1 [ms]

Fig. 2. Network topology used in simulation

where ∆ is a control parameter, which is the target value of the
chunk transfer time.

Note that, at the time of the first chunk transfer, the GridFTP
goodput G(N−1) and G(N−2) are unknown. Hence, the chunk
size X is determined as follows.

X ← N0 W

R
∆ (14)

At the time of the second chunk transfer, the GridFTP good-
put G(N−2) is unknown. So the chunk size X is determined
as follows.

X ← N/N−1 G(N−1)∆ (15)

4. Simulation

In this section, the effectiveness of the proposed automatic
parameter configuration mechanism is evaluated by simulation
experiments. Figure 2 shows the network topology used in
simulation. In this network topology, a GridFTP server and
a GridFTP client are connected via two DropTail routers. A
file of 10 [Gbyte] is transferred from the GridFTP server to
the client. Using the proposed three operation modes of the
automatic parameter configuration mechanism, the number of
parallel TCP connections is dynamically changed.

The ns-2 simulator (version 2.28) [2] was used for the sim-
ulation. The following parameters were used in all simulations
unless otherwise stated: the bottleneck link bandwidth B is
100 [Mbit/s]; the propagation delay τ is 10 [ms]; the buffer
size of DropTail router is 1,000 [packet]; the TCP socket buffer
size W is 64 [Kbyte]; the TCP packet length is 1,500 [byte];
the parameter ρ is 0.1; the initial value of the number of par-
allel TCP connections N0 is 1; the target value of the chunk
transfer time ∆ is 10 [s]; the control parameter η is 0.8; the
multiplicative increase factor γ of the MI mode and MI+ mode
is 2.0; the additive increase factor α of the AIMD mode is 2.0;
and multiplicative decrease factor β of the AIMD mode is 0.5.

Figures 3 and 4 show the evolution of the GridFTP goodput
G and the number of parallel TCP connections, N , adjusted
by the automatic parameter configuration mechanism, respec-
tively. These figures plot the GridFTP goodput and the adjusted
number of parallel TCP connections, which were measured
when every chunk transfer was completed.

It can be seen from Figs. 3 and 4 that both the MI mode
and MI+ mode perform well. For both the MI mode and MI+
mode, the number of parallel TCP connections exponentially
increases after the start of the file transfer, and converges to
32 and 25, respectively, after approximately 70 [s] from the

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

Gr
idF

TP
 g

oo
dp

ut
 G

 [M
bit

/s]

Time [s]

MI mode
MI+ mode

AIMD mode

Fig. 3. Evolution of GridFTP goodput G (B = 100 [Mbit/s],
τ = 10 [ms], W = 64 [Kbyte])

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000Nu
m

be
r o

f p
ar

all
el

TC
P

co
nn

ec
tio

ns
 N

Time [s]

MI mode
MI+ mode

AIMD mode

Fig. 4. Number of parallel TCP connections N
(B = 100 [Mbit/s], τ = 10 [ms], W = 64 [Kbyte])

start of the file transfer. The GridFTP goodput at this point is
approximately 97 [Mbit/s] for the MI mode and MI+ mode.

These results show that GridFTP can sufficiently use the
available bandwidth of the network by using the MI mode or
MI+ mode. These also show that the rise of the number of par-
allel TCP connections is slower in the AIMD mode compared
to both the MI mode and MI+ mode, in which the number
of parallel TCP connections, N , increases linearly. However,
since the transient performance of the AIMD mode largely de-
pends on the additive increase factor α and multiplicative de-
crease factor β, further examination is necessary to study the
effect of these control parameters.

Next, the GridFTP goodput for a different bottleneck link
bandwidth B is shown in Fig. 5. In this figure, the TCP socket
buffer size W is set to 1 [Mbyte]. For comparison purposes,
the GridFTP goodput with a single TCP connection is also in-
cluded in the figure, showing poor performance when the bot-
tleneck link bandwidth is large. This figure indicates that the
bottleneck link bandwidth can be almost fully utilized by us-
ing the automatic parameter configuration mechanism. How-
ever, utilization of the bottleneck link is slightly degraded as
the bottleneck link bandwidth becomes large. This is because
TCP connections take time to fully utilize the bottleneck link
bandwidth when the link bandwidth is large. Consequently,
the automatic parameter configuration mechanism takes time
to find the optimal number of TCP connections, leading less
GridFTP goodput.

The GridFTP goodput when changing the propagation delay
τ is shown in Fig. 6. This figure shows that with the MI mode
and MI+ mode, the GridFTP goodput hardly degrades even

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Gr
idF

TP
 g

oo
dp

ut
 G

 [M
bit

/s]

Bottleneck link bandwidth [Mbit/s]

MI mode
MI+ mode

AIMD mode
single TCP connection

Fig. 5. Effect of the bottleneck link bandwidth B on GridFTP
goodput G (τ = 10 [ms], W = 1 [Mbyte])

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

Gr
idF

TP
 g

oo
dp

ut
 G

 [M
bit

/s]

Propagation delay [ms]

MI mode
MI+ mode

AIMD mode
single TCP connection

Fig. 6. Effect of propagation delay τ on GridFTP goodput G
(B = 100 [Mbit/s], W = 64 [Kbyte])

 0

 20

 40

 60

 80

 100

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Gr
idF

TP
 g

oo
dp

ut
 [M

bit
/s]

Control parameter η

MI mode
MI+ mode

AIMD mode

Fig. 7. Effect of control parameter η on GridFTP goodput G
(B = 100 [Mbit/s], τ = 10 [ms],W = 64 [Kbyte])

for a large propagation delay. On the contrary, with the AIMD
mode, the GridFTP goodput decreases almost linearly as the
propagation delay becomes large.

Finally, Fig. 7 shows the GridFTP goodput when changing
the control parameter η of the automatic parameter configura-
tion mechanism. This figure shows that in the MI mode, MI+
mode, and AIMD mode, the goodput of GridFTP is almost in-
dependent of the control parameter η as long as η is less than
0.85.

From these observations, it is concluded that the MI mode
and MI+ mode show a good performance. Namely, with the
MI mode or MI+ mode, GridFTP with the automatic parameter
configuration mechanism can realize high goodput regardless
of the bottleneck link bandwidth and the propagation delay. On
the contrary, with the AIMD mode, GridFTP can achieve high

goodput when the propagation delay is not large. However,
the AIMD mode requires careful configuration of its control
parameters α and β.

5. Summary and Future Works

In this paper, the automatic parameter configuration mecha-
nism for GridFTP has been proposed, mainly focusing on the
parallel data transfer feature for GridFTP. The proposed auto-
matic parameter configuration mechanism transfers a file be-
tween GridFTP server and client as chunks, and then measures
the GridFTP goodput and the round-trip time. Based on the
measured GridFTP goodput and the round-trip time, the num-
ber of parallel TCP connections is adjusted so as to maximize
the GridFTP goodput. As operational modes to adjust the num-
ber of parallel TCP connections, three modes MI, MI+, and
AIMD have been proposed, and their effectiveness has been
evaluated by simulation experiments. The simulation results
demonstrate that the proposed automatic parameter configura-
tion mechanism significantly improves the GridFTP goodput
and thus enables to effectively utilize the available bandwidth
of the network.

As a future work, simulation experiments under various net-
work configurations to identify a parameter range that opti-
mizes the performance of the proposed automatic parameter
configuration mechanism should be conducted. In simulation
experiments, performance of the automatic parameter configu-
ration mechanism has been evaluated when the file size is suffi-
ciently large. When the file size is small, it is expected that the
performance of the automatic parameter configuration mecha-
nism is significantly affected by configuration of the update in-
terval of the number of parallel TCP connections and the chunk
size. Hence, investigation on the optimal parameter configura-
tion for those control parameters is necessary. Fairness among
GridFTP sessions sharing the same bottleneck link should also
be evaluated. In a general network with multiple GridFTP ses-
sions, maintaining fairness among those GridFTP sessions is
an important issue. Regarding fairness among GridFTP ses-
sions, it is expected that the AIMD mode may perform better
than the MI and MI+ modes, but more through investigation is
definitely required.

Acknowledgments

We would like to deeply express our appreciation and grate-
fulness to both Mr. Masayuki Murata and Mr. Hideyuki Ya-
mamoto of the Graduate School of Information Science and
Technology, Osaka University, for joining meaningful discus-
sions and theoretical arguments in our process of conducting
this research.

This work is supported by the NAREGI (National Research
Grid Initiative) Project from the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

References
[1] Globus Toolkit, available at http://www.globus.org/.
[2] The network simulator – ns2, available at http://www.isi.

edu/nsnam/ns/.
[3] Open Grid Forum, http://www.ogf.org/.
[4] W Allcock, et al., GridFTP: Protocol extensions to FTP for the

Grid. OGF Document Series GFD.20, 2003, Also available as
http://www.ggf.org/documents/GFD.20.pdf.

[5] N Ehsan and M Liu, Analysis of TCP transient behavior
and its effect on file transfer latency. Proceedings of IEEE
International Conference on Communications (ICC2003) 2003,
Vol. 26, pp. 1806–1811.

[6] R Elz and P Hethmon, FTP security extensions. Request for
Comments (RFC) 2228, 1997.

[7] S Floyd, HighSpeed TCP for large congestion windows. Request
for Comments (RFC) 3649, 2003.

[8] T J Hacker, B D Athey and B Noble, The end-to-end performance
effects of parallel TCP sockets on a lossy wide-area network.
Proceedings of the 16th IEEE-CS/ACM International Parallel
and Distributed Processing Symposium (IPDPS) 2002, pp. 434–
443.

[9] P Hethmon and R Elz, Feature negotiation mechanism for the
file transfer protocol. Request for Comments (RFC) 2389, 1998.

[10] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kauffman, San Francisco,
1999.

[11] T Ito, H Ohsaki and M Imase, On parameter tuning of
data transfer protocol GridFTP in wide-area Grid computing.
Proceedings of Second International Workshop on Networks for
Grid Applications (GridNets 2005) 2005, pp. 415–421.

[12] I Mandrichenko, W Allcock and T Perelmutov, GridFTP v2
protocol description. OGF Document Series GFD.47, 2005, Also
available as http://www.ggf.org/documents/GFD.47.pdf.

[13] J Padhye and S Floyd, On inferring TCP behavior. ACM
SIGCOMM Computer Communication Review, Vol. 31, No. 4,
2001, pp. 287–298.

[14] J Postel, Transmission control protocol. Request for Comments
(RFC) 793, 1981.

[15] J Postel and J Reynolds, File transfer protocol (FTP). Request
for Comments (RFC) 959, 1985.

[16] L Qiu, Y Zhang and S Keshav, On individual and aggregate TCP
performance. Proceedings of Internetl Conference on Network
Protocols 1999, pp. 203–212.

[17] S Thulasidasan, W Feng and M K Gardner, Optimizing GridFTP
through dynamic right-sizing. Proceedings of IEEE International
Symposium on High Performance Distributed Computing 2003,
pp. 14–23.

Author Bios

Takeshi Ito received B.E. degree in the Information and Com-
puter Sciences from Osaka University. He also received the
Master of Information Science and Technology degree from
Osaka University, Osaka, Japan, in 2006. He is currently a
Ph.D. candidate at Department of Information Networking,
Graduate School of Information Science and Technology, Os-
aka University, Japan. His research work is in the area of Grid
networks.

Hiroyuki Ohsaki received the M. E. degree in the Infor-
mation and Computer Sciences from Osaka University, Osaka,
Japan, in 1995. He also received the Ph. D. degree from Osaka
University, Osaka, Japan, in 1997. He is currently an associate
professor at Department of Information Networking, Graduate
School of Information Science and Technology, Osaka Univer-
sity, Japan. His research work is in the area of traffic manage-
ment in high-speed networks. He is a member of IEEE and
Institute of Electronics, Information, and Computer Engineers
of Japan (IEICE).

Makoto Imase received his B.E. and M.E. degrees in infor-
mation engineering from Osaka University in 1975 and 1977,
respectively. He received D.E. degree from Osaka University in
1986. From 1977 to 2001, he was engaged Nippon Telegraph
and Telephone Corporation (NTT). He has been a Professor
of Graduate School of Information Science and Technology at
Osaka University since 2002. His research interests are in the
area of information networks, distributed systems and graph
theory. He is a member of IPSJ, JSIAM, and IEICE.

