
Automatic Parameter Configuration Mechanism
for Data Transfer Protocol GridFTP

Takeshi Ito, Hiroyuki Ohsaki, and Makoto Imase
Graduate School of Information Science and Technology, Osaka University, Japan

E-mail: {t-itou,oosaki,imase}@ist.osaka-u.ac.jp

Abstract

In this paper, we propose an automatic parameter config-
uration mechanism for GridFTP, which optimizes the num-
ber of parallel TCP connections by utilizing analytic results
in [1]. The proposed mechanism first measures the network
status (e.g., the goodput and the round-trip time of GridFTP
data channels) at the GridFTP client. Based on these mea-
surement results, it adjusts the number of parallel TCP con-
nections for maximizing the GridFTP goodput. Three op-
erational modes, MI (Multiplicative Increase), MI+ (Multi-
plicative Increase Plus), and AIMD (Additive Increase and
Multiplicative Decrease) are proposed in this paper, each
of which takes a different strategy for adjusting the num-
ber of parallel TCP connections. We evaluate performance
of the proposed automatic parameter configuration mecha-
nism through simulation experiments. We demonstrate that
the proposed automatic parameter configuration mecha-
nism significantly improves the performance of GridFTP.

1. Introduction

In recent years, exploitation of the network in larger ca-
pacity and in wider region has rapidly been in progress. In
an experimental testbed network, the bottleneck link band-
width reaches several Tbit/s and the transmission de-
lay between end hosts sometimes reaches a hundred
msec. On the other hand, Grid computing, which con-
nects geographically-distributed multiple computing re-
sources through the network, has been receiving a great
deal of attention [2]. Grid computing is expected to effi-
ciently use computational resources that have not been suf-
ficiently utilized and to enable large-scale scientific and
engineering computation. However, such large-scale scien-
tific and engineering computation requires large file trans-
fer among computers through the network. For this pur-
pose, there has been increasing demand for a high-speed
data transfer protocol that can effectively transfer large vol-
ume data.

TCP (Transmission Control Protocol) has been widely
used in the Internet to carry data traffic [3]. There are var-

ious versions of TCP, and the most popular ones are TCP
version Reno (TCP Reno) and its variants [4]. TCP Reno
adjusts the packet transfer rate to the network in the con-
gestion avoidance phase by implementing an AIMD (Addi-
tive Increase Multiplicative Decrease) window flow control.
TCP Reno normally updates its window size every round-
trip time, but the window size is halved when a packet
loss is detected in the network. Thus, TCP Reno drasti-
cally decreases its throughput due to a small number of
packet losses when the bandwidth delay product of the net-
work is large. Consequently, it has been pointed out that
TCP Reno has problems such as a difficulty in maintaining
higher throughput in a network with high packet loss prob-
ability.

GridFTP has been proposed as a protocol to effec-
tively transfer large volume data in Grid computing [5, 6].
GridFTP is designed to solve the existing TCP prob-
lems and has various additional features for this purpose.
These features include, for instance, parallel data trans-
fer using multiple TCP connections and automatic negoti-
ation of TCP socket buffer size. It is known that the effec-
tiveness of GridFTP depends largely on control parameter
configuration such as the number of parallel TCP connec-
tions [7, 8]. However, examination has not been conducted
sufficiently so far regarding how to configure GridFTP con-
trol parameters. For example, although a command is
defined in the GridFTP protocol to specify the num-
ber of parallel TCP connections between GridFTP server
and client, how to determine the number is not speci-
fied at all in the GridFTP protocol.

There have been several studies concerning the config-
uration method of the GridFTP control parameters [1, 9].
The literature [9] proposed the method to determine the re-
quired TCP socket buffer size by measuring the bandwidth
delay product between GridFTP server and client. This is
realized by extending the SBUF command in the GridFTP
extension block mode. In [1], the optimal number of par-
allel TCP connections and TCP socket buffer size are de-
rived by using a TCP fluid-flow model. However, to opti-
mize the number of parallel TCP connections in GridFTP
based on the analysis result in [1], the required information
such as round-trip time of the TCP connections, the packet

loss probability, and the available bandwidth of the network
should be known in advance. For this reason, the analysis
result in [1] cannot be directly applied to GridFTP in prac-
tice.

Therefore, this paper proposes a technique to optimize
the number of parallel TCP connections in GridFTP (i.e.,
automatic parameter configuration mechanism) through the
use of the analysis result in [1]. The proposed technique
first measures the network status (e.g., the goodput and the
round-trip time of GridFTP) at the GridFTP client. Then,
it adjusts the number of parallel TCP connections based on
the above information. Three operational modes (i.e., MI,
MI+, and AIMD) are considered in this paper, of which
each has a different algorithm to adjust the number of par-
allel TCP connections. Performance of the proposed auto-
matic parameter configuration mechanism is then assessed
by simulation experiments. As a result, it is demonstrated
that the proposed automatic parameter configuration mech-
anism substantially improves the performance of GridFTP.

The structure of this paper is as follows. Section 2 pro-
vides a general description of GridFTP as well as the ex-
planation on parallel data transfer that is one of the notable
features of GridFTP. Section 3 describes the design strategy
and basic idea of our proposed automatic parameter config-
uration mechanism, and then explains its algorithm in de-
tail. Section 4 demonstrates the effectiveness of the auto-
matic parameter configuration mechanism through simula-
tion experiments. Lastly, Section 5 summarizes this paper
and mentions future tasks.

2. GridFTP

GridFTP is a data transfer protocol, which is designed
to effectively transfer large volume data in Grid comput-
ing [5, 6]. GridFTP is an extension of FTP (File Transfer
Protocol) [10–12] that has been widely used and is cur-
rently under standardization by GGF (The Global Grid Fo-
rum) [13]. GridFTP, which uses TCP as its transport layer
communication protocol, is designed to solve several prob-
lems of TCP. For example, besides the features of the exist-
ing FTP, it has additional features such as automatic negoti-
ation of TCP socket buffer size, parallel data transfer, third-
party control of file transfer, partial file transfer, security,
and reliable data transfer [5, 6]. Most of these specific fea-
tures of GridFTP are realized by a new transfer mode called
extended block mode [5]. Currently, GridFTP server and
client software conforming to GridFTP version 1 (GridFTP
v1) [5] is implemented in the Globus Toolkit [14], which is
the defacto standard middleware for Grid computing. How-
ever, in this specific GridFTP implementation, the feature
of the automatic negotiation of TCP socket buffer size is not
implemented and therefore a user must manually specify the
number of parallel TCP connections for parallel data trans-
fer. In addition, GGF has been discussing the problems with
GridFTP v1 and also undertaking a study on GridFTP v2
(version 2) as a solution to these problems [6]. Additional

GridFTP
client

GridFTP
server

GridFTP
serverTCP connection

TCP socket
buffer

partial data
transfer

parallel file
transfer

parallelism

TCP socket
buffer size file

file

Grid network

Figure 1. Parallel data transfer in GridFTP

features have been incorporated in GridFTP v2. These fea-
tures relax several limitations of the extended block mode
in GridFTP v1, such that data transfer is restricted to a sin-
gle direction and unable to open/close data channels in the
midst of the data transfer. However, how to configure the
GridFTP control parameters regarding parallel TCP con-
nections has not been addressed even in the discussion on
GridFTP v2.

2.1. Parallel Data Transfer

Multiple TCP connections can be established in paral-
lel in GridFTP using OPTS RETR command (Fig. 1). With
this mechanism, a single file can be transferred from a single
server through multiple TCP connections. Higher through-
put can be expected by aggregating multiple TCP connec-
tions in comparison to using a single TCP connection [8].

This can be explained by the following reasons: (1) by
aggregating multiple TCP connections, larger bandwidth
can be gained in the TCP congestion avoidance phase than
those gained by other competing TCP connections [15].
This situation results from the fact that, in the TCP con-
gestion avoidance phase, the AIMD window flow control
is being executed, and therefore aggregated multiple TCP
connections can transfer data more advantageously through
the network with smaller packet loss probability. (2) by ag-
gregating multiple TCP connections, the total TCP socket
buffer size available to the file transfer increases. Aggre-
gation of N TCP connections can utilize as N times TCP
socket buffer size as that of a single TCP connection. (3)
by aggregating multiple TCP connections, ramp-up time of
the transfer rate in the TCP slow-start phase is shortened.
In the slow-start phase, the congestion window doubles ev-
ery round-trip time. For this reason, through the aggrega-
tion of N TCP connections the speed of the transfer rate
increase becomes N times as fast as that of a TCP connec-
tion.

However, the throughput drops if the number of aggre-
gate TCP connections, N , becomes too large, since this may
cause the following situations: (1) the window size per TCP

connection becomes smaller, so TCP timeout would fre-
quently occur. (2) the overhead required for the server to
process a TCP protocol stack would increase. Therefore,
the optimal number of TCP connections, N , should be de-
termined based on the network status. Nevertheless, how
to optimize the number of parallel TCP connections, N , in
GridFTP has not sufficiently been studied and still remains
as an open issue.

3. Automatic Parameter Configuration Mech-
anism for GridFTP

3.1. Design Strategy

First of all, we explain the basic principles for designing
automatic parameter configuration mechanism for GridFTP.

It is extremely important to provide the compatibility
with existing GridFTP in designing an automatic parame-
ter configuration mechanism for GridFTP. GridFTP is im-
plemented in the Globus Toolkit and has been spreading
rapidly in recent years. Since a number of GridFTP servers
have already been in operation, it is preferable to realize the
automatic parameter configuration mechanism at the side of
GridFTP client. Additionally, it is also favorable to establish
the automatic parameter configuration mechanism without
changing the existing GridFTP protocol so as to intercon-
nect with existing GridFTP servers. If the automatic param-
eter configuration is executed on the side of GridFTP client,
it will be difficult to realize the automatic parameter config-
uration in the third-party transfer. Nonetheless, we believe
that this would not be so problematic because most of the
transfers are executed between GridFTP servers and clients.

Next, it is desirable that the automatic parameter config-
uration mechanism for GridFTP can easily be installed in
Grid computing environment. Generally, Grid computing is
featured by the heterogeneity of computers and networks
constituting Grid. Therefore, the automatic parameter con-
figuration mechanism needs to operate in various computer
environments as well as various network environments. For
this reason, it is preferable for the automatic parameter con-
figuration mechanism to be realized in the Grid middleware
layer. In other words, it is important for the automatic pa-
rameter configuration mechanism to avoid using any func-
tionality specific to certain operating systems or network
devices on the computers. Currently, most of the comput-
ers use the transport layer communication protocol based
on TCP version Reno. Therefore, it is reasonable to assume
the transport layer communication protocol to be TCP ver-
sion Reno.

3.2. Basic Idea

In [1], the GridFTP goodput in steady state is approxi-
mately derived as

G � min
(

N W

R
,
N (1− p∗)

2 R

(
−3 +

√
6 + 21 p∗√

p∗

))
(1)

p∗ �
(
−2 +

2 B R

N
+

2
3

(
B R

N

)2
)−1

(2)

where G is the GridFTP goodput, N is the number of par-
allel TCP connections, W is the TCP socket buffer size for
each TCP connection, B is the bandwidth for the bottleneck
link, R is the round-trip time of the TCP connections, and
p∗ is the packet loss probability in the network. Equation (1)
indicates that the GridFTP goodput G is a convex func-
tion of the number N of parallel TCP connections. Thus,
the number of parallel TCP connections, N , should be se-
lected so as to maximize the GridFTP goodput G. However,
Eq. (1) also indicates that other parameters such as the bot-
tleneck link bandwidth B and the TCP connection round-
trip time R should be known in order to determine the opti-
mal number of N . This paper proposes a mechanism to au-
tomatically configure the number of parallel TCP connec-
tions on the side of GridFTP client by using the analysis re-
sult as formulated in Eq. (1).

Our basic idea is to search for the number of parallel
TCP connections, N , which maximizes Eq. (1) while mea-
suring the network status (i.e., the GridFTP goodput and
the round-trip time) on the side of GridFTP client. Equa-
tion (1) shows that the GridFTP goodput is upper-bound by
N W/R when the number of parallel TCP connections, N ,
is too small. Therefore, our idea is to firstly fix the num-
ber of parallel TCP connections, N , and transfer a chunk of
the file to be transferred and then measure the goodput G as
well as the round-trip time R on the side of GridFTP client.
Whether the current number of parallel TCP connections,
N , is larger than the optimal value can be assessed by eval-
uating the relationship between G and N W/R after trans-
ferring the chunk. Based on this result, the number of par-
allel TCP connections, N , is updated, and another chunk
is then transferred. By repeating this procedure, the num-
ber of parallel TCP connections can automatically be con-
figured so as to maximize the GridFTP goodput.

3.3. Measuring Network Status

We start by explaining how to measure the network sta-
tus on the side of GridFTP client. Note that the GridFTP
goodput G, the TCP socket buffer size W , and the round-
trip time R, are measurable in the middleware layer.

The GridFTP goodput can be calculated from the size of
a chunk and its transfer time, which is measured by trans-
ferring the chunk in the extended block mode [5]. Specifi-
cally, a fixed-sized chunk is transferred by ERET or ESTO

command in GridFTP’s extended block mode while mea-
suring its response time, T . Since the response to ERET
or ESTO command is returned when the chunk transfer is
completed [5], the GridFTP goodput can be calculated as
G = X/T from the size of the transferred chunk, X , and
the response time, T .

The TCP socket buffer size on the side of GridFTP client
can easily be obtained with the use of the socket API.
GridFTP has a feature to statically configure the socket
buffer size (i.e., SBUF command) [5], and the TCP socket
buffer size on the side of the server can be obtained using
this feature (more precisely, it can be configured to the value
specified by the GridFTP client). Either the TCP socket
buffer size of GridFTP client or that of GridFTP server,
which has the smaller value, will be used as W in Eq. (1).

The round-trip time R can be obtained by measuring the
command response time in the GridFTP control channel.
Specifically, the response time Ri is measured when com-
mands such as USER, PASS, SITE, FEAT, TYPE, MODE,
SIZE, OPTS, and PBSZ are executed by GridFTP client.
We can assume that GridFTP server would instantly com-
plete the process of these commands. For this reason, the
round-trip time R can be approximated by the response time
to these commands. More precisely, the average of response
times of the past M samples; i.e., R =

∑M
i=1 Ri/M , is used

as the estimated round-trip time R. As explained above,
measurement is possible by a passive measurement method
that does not burden the network by using just control pack-
ets or data packets of GridFTP.

On the other hand, among the variables that are included
in Eq. (1), measurement of the bottleneck link bandwidth B
and the packet loss probability p∗ in the network is difficult
on the side of GridFTP client. At present, it is difficult to
measure the bottleneck link bandwidth B or the packet loss
probability p∗ at the middleware layer using a passive mea-
surement method. Should features specific to certain oper-
ating systems or network devices on the computers be used,
it would become possible to measure the bottleneck link
bandwidth B or the packet loss probability p∗. However,
ease of installation and/or deployment in the Grid comput-
ing environment should be compromised. Likewise, even if
the bottleneck link bandwidth B or the packet loss prob-
ability p∗ could also be measured by employing an active
measurement method (e.g., generating UDP/ICMP packet
for measurement in the middleware layer), the compatibil-
ity with existing GridFTP servers would be impaired.

3.4. Adjusting the Number of Parallel TCP Con-
nections

We now explain how to adjust the number of parallel
TCP connections, N , so as to maximize the GridFTP good-
put after measuring the network status. The automatic pa-
rameter configuration mechanism proposed in this paper
transfers chunks of a file while measuring the GridFTP
goodput G, the TCP socket buffer size W , and the round-

trip time R. Based on this information, the number of par-
allel TCP connections, N , will be adjusted. For adjusting
the number of parallel TCP connections, N , we will dis-
cuss three operation modes as described below.

• MI (Multiplicative Increase) Mode
The MI mode starts from a small number of parallel TCP

connections, N , and multiplicatively increases it until the
TCP socket buffer size becomes not the bottleneck that im-
pedes the GridFTP goodput. In the following, let N0 de-
note the initial value of the number of parallel TCP connec-
tions, γ(> 1) denote a multiplicative increase factor, and
η(0 < η ≤ 1) denote a control parameter. The operation al-
gorithm of the MI mode is as follows.

1. Initialize the number of parallel TCP connections.

N ← N0 (3)

2. Transfer a fixed-sized chunk and then measure the
GridFTP goodput G and the round-trip time R.

3. If the following inequality is satisfied, conjecture the
TCP socket buffer size is the bottleneck and proceed
to the step 4. Otherwise, terminate the algorithm.

G > η × N W

R
(4)

4. Increase the number of parallel TCP connections as
follows, and return to the step 2.

N ← γ ×N (5)

•MI+ (Multiplicative Increase Plus) Mode
The MI+ mode starts from a small number of parallel

TCP connections, N , and multiplicatively increases it until
the TCP socket buffer size becomes not the bottleneck that
impedes the GridFTP goodput. It then optimizes the num-
ber of parallel TCP connections, N , using the result of the
steady state analysis (Eq. (1)). In the following, let N0 de-
note the initial value of the number of parallel TCP connec-
tions, γ(> 1) denote a multiplicative increase factor, and
η(0 < η ≤ 1) denote a control parameter. The operation al-
gorithm of the MI+ mode is as follows.

1. Initialize the number of parallel TCP connections.

N ← N0 (6)

2. Transfer the fixed-sized chunk, and then measure the
GridFTP goodput G and the round-trip time R.

3. If the following inequality is satisfied, conjecture the
TCP socket buffer size is the bottleneck and proceed
to the step 4. Otherwise, proceed to the step 5.

G > η × N W

R
(7)

4. Increase the number of parallel TCP connections as
follows, and return to the step 2.

N ← γ ×N (8)

5. Numerically derive the optimal value of the number of
parallel TCP connections, which maximizes the sec-
ond term of the right-hand side of Eq. (1). Configure
the number of parallel TCP connections to that value
and terminate the algorithm.

•AIMD (Additive Increase and Multiplicative Decrease)
Mode

The AIMD mode starts from a small number of parallel
TCP connections, N , and additively increases it if the TCP
socket buffer size is the bottleneck or otherwise multiplica-
tively decrease it. In the following, let N0 denote the initial
value of the number of parallel TCP connections, α(> 1)
denote an additive increase factor, β(0 < β < 1) denote
a multiplicative decrease factor, and η(0 < η ≤ 1) denote
a control parameter. The operation algorithm of the AIMD
mode is as follows.

1. Initialize the number of parallel TCP connections.

N ← N0 (9)

2. Transfer the fixed-length chunk and then measure the
GridFTP goodput G and the round-trip time R.

3. If the following inequality is satisfied, conjecture the
TCP socket buffer size is the bottleneck and proceed
to the step 4. Otherwise, proceed to the step 5.

G > η × N W

R
(10)

4. Increase the number of parallel TCP connections as
follows, and return to the step 2.

N ← N + α (11)

5. Decrease the number of parallel TCP connections as
follows, and return to the step 2.

N ← N(1− β) (12)

4. Simulation

In this section, we evaluate the effectiveness of the pro-
posed automatic parameter configuration mechanism by
simulation experiments. Figure 2 shows the network topol-
ogy used in simulation. In this network topology, a GridFTP
server and a GridFTP client are connected via two DropTail
routers. A file of 10 [Gbyte] is transferred from the GridFTP
client to the server. Using the proposed three operation
modes of the automatic parameter configuration mecha-
nism, the number of parallel TCP connections is dynami-
cally changed.

The ns-2 simulator (version 2.28) [16] was used for the
simulation. The following parameters were used in all sim-
ulations unless otherwise stated: the bottleneck link band-
width B is 100 [Mbit/s]; the propagation delay τ is 10 [ms];
the buffer size of DropTail router is 100 [packet]; the TCP
socket buffer size W is 64 [Kbyte]; the TCP packet length

bottleneck link

file

10 [Gbyte]

100 [Mbit/s]
10 [ms]

receiving
host

DropTail
 router

GridFTP
client

DropTail
 router

1 [ms]
sending

host

GridFTP
server

1 [Gbit/s]
1 [ms]

1 [Gbit/s]
1 [ms]

Figure 2. Network topology used in simula-
tion

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

Gr
idF

TP
 go

od
pu

t G
 [M

bit
/s]

Time [s]

MI mode
MI+ mode

AIMD mode

Figure 3. Evolution of GridFTP goodput G
(B = 100 [Mbit/s], τ = 10 [ms], W =
64 [Kbyte])

is 1500 [byte]; the number of samples M for estimating
the round-trip time is 10; the initial value of the number
of parallel TCP connections N0 is 1; the chunk size X is
100 [Mbyte]; the control parameter η is 0.8; the multiplica-
tive increase factor γ of the MI mode and MI+ mode is 2.0;
the additive increase factor α of the AIMD mode is 1.0; and
multiplicative decrease factor β of the AIMD mode is 0.5.

Figures 3 and 4 show the evolution of the GridFTP good-
put G and the number of parallel TCP connections, N ,
adjusted by the automatic parameter configuration mech-
anism, respectively. These figures plot the GridFTP good-
put and the adjusted number of parallel TCP connections,
which were measured when every chunk transfer was com-
pleted.

It can be seen from Figs. 3 and 4 that both the MI mode
and MI+ mode perform well. For both the MI mode and
MI+ mode, the number of parallel TCP connections expo-
nentially increases after the start of the file transfer, and con-
verges to 8 and 4, respectively, after approximately 72 [s]
from the start of the file transfer. The GridFTP goodput at

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000Nu
mb

er
 of

 pa
ra

lle
l T

CP
 co

nn
ec

tio
ns

 N

Time [s]

MI mode
MI+ mode

AIMD mode

Figure 4. Number of parallel TCP connec-
tions N (B = 100 [Mbit/s], τ = 10 [ms], W =
64 [Kbyte])

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Gr
idF

TP
 G

oo
dp

ut
G

[M
bit

/s]

Bottleneck link bandwidth B [Mbit/s]

MI mode
MI+ mode

AIMD mode
single TCP connection

Figure 5. Effect of the bottleneck link band-
width B on GridFTP goodput G (τ = 10 [ms],
W = 64 [Kbyte])

this point is approximately 88 [Mbit/s] for the MI mode and
87 [Mbit/s] for the MI+ mode.

These results show that GridFTP can sufficiently use the
available bandwidth of the network by using the MI mode
or MI+ mode. These also show that the rise of the number of
parallel TCP connections is slower in the AIMD mode com-
pared to both the MI mode and MI+ mode, in which the
number of parallel TCP connections, N , increases linearly.
However, since the transient performance of the AIMD
mode largely depends on the additive increase factor α and
multiplicative decrease factor β, further examination is nec-
essary to study the effect of these control parameters.

Next, the GridFTP goodput for a different bottleneck link
bandwidth B is shown in Fig. 5. For comparison purposes,
the GridFTP goodput with a single TCP connection is also
included in the figure, showing poor performance when the
bottleneck link bandwidth is large. This figure indicates
that the bottleneck link bandwidth can be almost fully uti-

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

Gr
idF

TP
 go

od
pu

t G
 [M

bit
/s]

Propagation delay τ [ms]

MI mode
MI+ mode

AIMD mode
single TCP connection

Figure 6. Effect of propagation delay τ on
GridFTP goodput G (B = 100 [Mbit/s], W =
64 [Kbyte])

 0

 20

 40

 60

 80

 100

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Gr
idF

TP
 go

od
pu

t G
 [M

bit
/s]

Control parameter η

MI mode
MI+ mode

AIMD mode

Figure 7. Effect of control parameter η on
GridFTP goodput G (B = 100 [Mbit/s], τ =
10 [ms],W = 64 [Kbyte])

lized by using our automatic parameter configuration mech-
anism. However, utilization of the bottleneck link is slightly
degraded as the bottleneck link bandwidth becomes large.
This is because TCP connections take time to fully utilize
the bottleneck link bandwidth when the link bandwidth is
large. Consequently, the automatic parameter configuration
mechanism takes time to find the optimal number of TCP
connections, leading less GridFTP goodput.

The GridFTP goodput when changing the propagation
delay τ is shown in Fig. 6. This figure shows that with the
MI mode and MI+ mode, the GridFTP goodput hardly de-
grades even for a large propagation delay. On the contrary,
with the AIMD mode, the GridFTP goodput decreases al-
most linearly as the propagation delay becomes large.

Finally, Fig. 7 shows the GridFTP goodput when chang-
ing the control parameter η of our automatic parameter con-
figuration mechanism. This figure shows that in the MI
mode and MI+ mode, the goodput of GridFTP is almost in-

dependent of the control parameter η. On the contrary, in
the AIMD mode, the goodput of GridFTP slightly degrades
as the control parameter η becomes large.

From these observations, we conclude that the MI mode
and MI+ mode show a good performance of three oper-
ation modes. Namely, with the MI mode or MI+ mode,
GridFTP with our automatic parameter configuration mech-
anism can realize high goodput regardless of the bottleneck
link bandwidth, the propagation delay, and the control pa-
rameter η. On the contrary, with the AIMD mode, GridFTP
can achieve high goodput when the propagation delay is not
large. However, the AIMD mode requires careful configu-
ration of its control parameters α and β.

5. Summary and Future Works

In this paper, we have proposed the automatic parame-
ter configuration mechanism for GridFTP, mainly focusing
on the parallel data transfer feature for GridFTP. The pro-
posed automatic parameter configuration mechanism trans-
fers a file between GridFTP server and client as chunks,
and then measures the GridFTP goodput and the round-
trip time. Based on the measured GridFTP goodput and the
round-trip time, the number of parallel TCP connections is
adjusted so as to maximize the GridFTP goodput. As op-
erational modes to adjust the number of parallel TCP con-
nections, three modes MI, MI+, and AIMD have been pro-
posed, and their effectiveness has been evaluated by simu-
lation experiments. The simulation results demonstrate that
the proposed automatic parameter configuration mechanism
significantly improves the GridFTP goodput and thus en-
ables to effectively utilize the available bandwidth of the
network.

As a future work, we are planning to conduct simula-
tion experiments under various network configurations to
identify a parameter range that optimizes the performance
of the proposed automatic parameter configuration mecha-
nism. In our simulation experiments, we have evaluated per-
formance of our automatic parameter configuration mech-
anism when the file size is sufficiently large. When the
file size is small, it is expected that the performance of
our automatic parameter configuration mechanism is sig-
nificantly affected by configuration of the update interval of
the number of parallel TCP connections and the chunk size.
Hence, investigation on the optimal parameter configuration
for those control parameters is necessary. We are also plan-
ning to evaluate fairness among GridFTP sessions sharing
the same bottleneck link. In a general network with mul-
tiple GridFTP sessions, maintaining fairness among those
GridFTP sessions is an important issue. Regarding fair-
ness among GridFTP sessions, it is expected that the AIMD
mode may perform better than the MI and MI+ modes, but
more through investigation is definitely required.

Acknowledgments

We would like to deeply express our apprecia-
tion and gratefulness to both Mr. Masayuki Murata and
Mr. Hideyuki Yamamoto of the Graduate School of In-
formation Science and Technology, Osaka University,
for joining meaningful discussions and theoretical argu-
ments in our process of conducting this research.

References

[1] T. Ito, H. Ohsaki, and M. Imase, “On parameter tuning of
data transfer protocol GridFTP in wide-area Grid comput-
ing,” in Proceedings of Second International Workshop on
Networks for Grid Applications (GridNets 2005), Oct. 2005,
pp. 415–421.

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure. San Francisco: Morgan Kauff-
man, 1999.

[3] J. Postel, “Transmission control protocol,” Request for Com-
ments (RFC) 793, Sept. 1981.

[4] J. Padhye and S. Floyd, “On inferring TCP behavior,”
ACM SIGCOMM Computer Communication Review, vol. 31,
no. 4, pp. 287–298, Aug. 2001.

[5] W. Allcock et al., “GridFTP: Protocol extensions to FTP for
the Grid,” GGF Document Series GFD.20, Apr. 2003, also
available as http://www.gridforum.org/GFD.20.pdf.

[6] I. Mandrichenko, W. Allcock, and T. Perelmutov, “GridFTP
v2 protocol description,” GGF Document Series GFD.47,
May 2005, also available as http://www.gridforum.org/GFD.
47.pdf.

[7] T. J. Hacker and B. D. Athey, “The end-to-end perfor-
mance effects of parallel TCP sockets on a lossy wide-
area network,” in Proceedings of the 16th IEEE-CS/ACM In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), Aug. 2001.

[8] L. Qiu, Y. Zhang, and S. Keshav, “On individual and aggre-
gate TCP performance,” in Proceedings of Internetl Confer-
ence on Network Protocols, Oct. 1999, pp. 203–212.

[9] S. Thulasidasan, W. Feng, and M. K. Gardner, “Optimizing
GridFTP through dynamic right-sizing,” in Proceedings of
IEEE International Symposium on High Performance Dis-
tributed Computing, June 2003.

[10] J. Postel and J. Reynolds, “File transfer protocol (FTP),” Re-
quest for Comments (RFC) 959, Oct. 1985.

[11] R. Elz and P. Hethmon, “FTP security extensions,” Request
for Comments (RFC) 2228, Oct. 1997.

[12] P. Hethmon and R. Elz, “Feature negotiation mechanism
for the file transfer protocol,” Request for Comments (RFC)
2389, Aug. 1998.

[13] “Global Grid Forum,” http://www.ggf.org/.
[14] “Globus Toolkit,” available at http://www.globus.org/.
[15] S. Floyd, “Highspeed TCP for large

congestion windows,” Internet Draft
draft-ietf-tsvwg-highspeed-01.txt, Aug.
2003.

[16] “The network simulator – ns2,” available at http://www.isi.
edu/nsnam/ns/.

