
On Parameter Tuning of Data Transfer Protocol
GridFTP for Wide-Area Grid Computing

Takeshi Ito, Hiroyuki Ohsaki and Makoto Imase
Graduate School of Information Science and Technology, Osaka University

1-5, Yamadaoka, Suita, Osaka, 560-8531, Japan
E-mail: {t-itou, oosaki, imase}@ist.osaka-u.ac.jp

Abstract— In wide-area Grid computing, geographically dis-
tributed computational resources are connected for enabling
efficient and large-scale scientific/engineering computations. In
the wide-area Grid computing, a data transfer protocol called
GridFTP has been commonly used for large file transfers.
GridFTP has the following features for solving problems of the
existing TCP. First, for accelerating the start-up in TCP’s slow
start phase and achieving high throughput in TCP’s congestion
avoidance phase, multiple TCP connections can be established
in parallel. Second, according to the bandwidth-delay product
of a network, the TCP socket buffer size can be negotiated
between GridFTP server and client. However, in the literature,
sufficient investigation has not been performed either on the
optimal number of TCP connections or the optimal TCP socket
buffer size. In this paper, we therefore quantitatively investigate
the optimal parameter configuration of GridFTP in terms of the
number of TCP connections and the TCP socket buffer size. We
first derive performance metrics of GridFTP in steady state (i.e.,
goodput and packet loss probability). We then derive the optimal
parameter configuration for GridFTP and quantitatively show
performance limitations of GridFTP through several numerical
examples. We also demonstrate validity of our approximate
analysis by comparing simulation results with analytic ones.

I. INTRODUCTION

Transmission Control Protocol (TCP) has been widely used
as a transport-level communication protocol in the Internet [1].
GridFTP has been designed for utilizing TCP as its transport-
level communication protocol [2]. However, TCP is a rather
old communication protocol that was designed in the 1970s.
Several problems have been reported regarding TCP such as
its inability to support the rapidly increasing speeds of recent
networks.

As an example, the current TCP Reno (TCP version Reno)
cannot detect congestion in a network until packet loss occurs,
so a large number of packets are lost. With the faster speeds
of networks and larger buffer sizes of routers in a network,
the amount of packets lost mushrooms and TCP throughput
deteriorates significantly. To resolve existing TCP problems,
GridFTP has features such as establishing multiple TCP con-
nections in parallel to accelerate start-up in the TCP slow start
phase and negotiating the TCP socket buffer size between the
GridFTP server and client according to the bandwidth-delay
product of a network [2].

However, the effectiveness of these features has not been
fully investigated. In other words, optimal configurations for
the number of parallel TCP connections and TCP socket
buffer size have not been investigated. There have been several

related works on TCP socket buffer size and parallel TCP
connections [3-9].

In [3, 4], automatic tuning mechanisms of TCP socket buffer
have been proposed. However, both approaches require some
modifications to a socket API and/or a TCP protocol stack.
In Grid computing, heterogeneous computing resources are
integrated. Hence, such modifications to operating systems
are unrealistic; i.e., optimization of TCP socket buffer size
should not rely on any information obtained from other than
Grid middleware. In [5], an extension to GridFTP protocol
for automatically negotiating TCP socket buffer size has been
proposed. However, the proposed mechanism is simple and not
optimal; i.e., it simply allocates twice of the BDP (bandwidth-
delay product) for each TCP connection. For efficient memory
allocation to TCP socket buffer, more intelligent mechanism
must be incorporated.

On the contrary, effectiveness of parallel TCP connections
has been studied by many researchers [6-9]. In [6-9], per-
formance of parallel TCP connections is investigated using
simulation experiments. However, for optimizing the number
of parallel TCP connections, simulation-based approaches are
inappropriate; i.e., it is quite difficult or, in most cases, impos-
sible to apply simulation results for a parameter optimization.
For optimizing the number of parallel TCP connections, some
insight in the effect of parallel TCP connections on their
performance is necessary. In [7, 9], simple analytic models
of parallel TCP connections have been presented. However,
those analytic models are not applicable for optimizing the
number of parallel TCP connections since they do not capture
the trade-offs in parallel data transfer, as we will explain in
Section II.

In this paper, by particularly focusing on the number of
parallel TCP connections and TCP socket buffer size, we quan-
titatively investigate their optimal parameter configurations
and clarify performance limitations of GridFTP. We first derive
a continuous-time model for GridFTP by aggregating multiple
TCP continuous-time models [10]. Since TCP is a feedback
control that changes the window size depending on packet
loss probability in a network, we model multiple TCP con-
nections as independent continuous-time SISO (Single-Input
and Single-Output) systems. By combining these continuous-
time TCP models, we then obtain a continuous-time model of
GridFTP. Performance metrics in steady state (e.g., GridFTP
goodput and packet loss probability) are derived using our

GridFTP model. By focusing on the number of TCP connec-
tions and TCP socket buffer size, we also derive the optimal
parameter configuration for GridFTP and quantitatively show
performance limitations of GridFTP.

Note that GridFTP supports two types of using parallel TCP
connections: parallel data transfer and striped data transfer
(see Section II). The parallel data transfer (from a single server
to a client) is a special case of the striped data transfer (from
multiple servers to a client). For brevity, we limit the scope of
this paper to the parallel data transfer. However, our analytic
approach can be directly applied to the case of the striped
data transfer by simply differentiating round-trip times, R, in
Section IV. Using a simple model enables us to derive several
GridFTP performance metrics in a closed-form, which gives us
more insights than with an unnecessarily complicated model.

The structure of this paper is as follows. First, Sec-
tion II briefly explains GridFTP’s major features (i.e., auto-
negotiation of TCP socket buffer size and parallel data trans-
fer), and discusses unresolved problems of GridFTP. Sec-
tion III explains the definition of terms used in this paper
and our approach for modeling GridFTP. Section IV analyzes
steady state performance of GridFTP by aggregating multiple
TCP continuous-time models, and derives the optimal param-
eter configuration of GridFTP. Section V compares analytic
results with simulation ones for validating our approximate
analysis. Finally, Section VI summarizes this paper and dis-
cusses future topics.

II. GRIDFTP

Standardization of GridFTP [2] as a common bulk data
transfer protocol for the Grid has been currently proceeding
in the Global Grid Forum (GGF) [11]. GridFTP is a protocol
that extends FTP (File Transfer Protocol) [12-14], which was
standardized in the IETF and has been widely used in the In-
ternet. In addition to features of the original FTP, the following
features are added to GridFTP: auto-negotiation of TCP socket
buffer size, parallel data transfer, third-party control of data
transfer, partial file transfer, security, and support for reliable
data transfer.

In what follows, an overview of two major features of
GridFTP, auto-negotiation of TCP socket buffer size and
parallel data transfer, and unresolved problems of GridFTP
is presented.

A. Auto-Negotiation of TCP Socket Buffer Size

In GridFTP, the server’s TCP socket buffer size can be
explicitly configured by the client with the SBUF (Set Buffer
Size) command. In addition, TCP socket buffer size can be
configured by negotiating between the GridFTP server and
client using the ABUF (Auto-Negotiate Buffer Size) command.
Almost all existing TCP implementations allocate a fixed-
size (e.g., 64 [Kbyte]) TCP socket buffer, so throughput
improvement can be expected when the TCP socket buffer size
is appropriately configured according to the bandwidth-delay
product of the network.

However, it has not been adequately studied how the
ABUF command should be implemented. For instance, the
ABUF command has not been implemented in the GridFTP
implementation included in a Globus Toolkit [15]. Examples
of the ABUF command implementation is discussed in [2,
5], which measure a round-trip time and available bandwidth
of a network by generating measurement traffic between the
GridFTP server and client.

However, more investigation on the ABUF command im-
plementation is necessary. In a real network, the available
bandwidth of a network varies with time, and a large amount
of measurement traffic must be generated for accurately mea-
suring the available bandwidth. Because of these reasons,
active measurement approaches as discussed in [2, 5], which
configure TCP socket buffer size based simply on the mea-
sured bandwidth-delay product, are inadequate for practical
purposes.

B. Parallel Data Transfer

GridFTP can establish multiple TCP connections in parallel
by using OPTS RETR or OPTS STOR command. Hence, a
single file can be transferred via multiple TCP connections
from/to a single or multiple GridFTP servers. Higher through-
put than with a single TCP connection can be expected through
aggregation of multiple TCP connections [6-8].

This can be explained by the following three reasons. First,
larger bandwidth can be gained by aggregating multiple TCP
connections when competing with other TCP connections in
the TCP congestion avoidance phase [16]. This is because
AIMD window flow control is adopted in the TCP congestion
avoidance phase and data transfer can be performed better
by aggregating multiple TCP connections in a network with
a low packet loss probability. Second, the total TCP socket
buffer size that can be used in a file transfer becomes large
by aggregating multiple TCP connections. This is because
the total of TCP socket buffer sizes is N times larger by
aggregating N TCP connections. Third, the start-up of the
transfer rate is accelerated in the TCP slow start phase by
aggregating multiple TCP connections. In the slow start phase,
the congestion window doubles for every round-trip time.
Accordingly, the start-up for the transfer rate is N times faster
by aggregating N TCP connections.

However, if the number N of aggregate TCP connections is
too large, it results in decreased throughput for the following
reasons. First, the window size per TCP connection decreases,
and TCP timeout are more likely to occur. Second, the
overhead required for the GridFTP server and client to process
the TCP protocol stack increases. Accordingly, the optimal
value for the number of aggregate TCP connections, N ,
must be determined according to several network conditions.
However, it has not been fully investigated and is still an
unresolved problem how to determine the number of parallel
TCP connections N in various network environments.

router
model

data packet

ACK packet

GridFTP
client

routerGridFTP
server

parallel data transfer (multiple TCP connections)

TCP model

TCP model

TCP model

+

+

flow distribution

w

p

B
N

Fig. 1. Modeling GridFTP with parallel data transfer by aggregating TCP
continuous-time models

III. ANALYTIC MODEL

In this paper, modeling of GridFTP is performed using a
network modeling technique proposed in [10, 17]. In what
follows, a primary feature of GridFTP, parallel data transfer is
modeled.

In what follows, a source host of data transfer is called a
GridFTP server and a destination host of the data transfer is
called a GridFTP client. For brevity, our analysis is limited
to cases of GridFTP server-to-client file transfers. However,
other cases of GridFTP client-to-server file transfers can be
easily modeled using the same modeling approach.

GridFTP supports parallel data transfer, partial file transfer,
and third-party control of data transfer, so there exists one
or more GridFTP servers for a single GridFTP client. In
our analysis, traffic on the control channel is assumed to be
negligible, and only traffic on data channel is modeled.

Modeling GridFTP is performed as follows (Fig. 1). First,
the GridFTP server is modeled by aggregating multiple
continuous-time models of the TCP congestion control mecha-
nism. When GridFTP performs parallel data transfer, multiple
TCP connections are established between the GridFTP server
and client. Accordingly, multiple TCP congestion control
mechanism models are aggregated at the GridFTP server.

IV. STEADY STATE ANALYSIS

In this section, the optimal number of parallel TCP connec-
tions is derived by performing steady state analysis for our
GridFTP model.

First, a case when the TCP socket buffer size W is larger
than the bandwidth-delay product per TCP connection (i.e.,
TCP throughput × round-trip time) is considered. In this case,
according to [10, 17], changes in the TCP window size w(t)
at time t including a TCP timeout mechanism are modeled

using a fluid-flow approximation as

ẇ = (1 − p(t))
w(t − R)
w(t)R

−p(t)
2
3
w(t)

w(t − R)
R

{1 − pTO(t)}

−p(t)
{

4
3
w(t) − 1

}
w(t − R)

R
pTO(t) (1)

where p(t) is the packet loss probability in a network at time
t, R is the round-trip time of TCP connections, and pTO(t) is
the probability of detecting packet loss at time t due to TCP
timeouts.

The packet loss probability and TCP window size in steady
state are denoted by p∗ and w∗, respectively. In steady state,
ẇ = 0, p(t) = p∗, and w(t) = w(t − R) = w∗, so the
following relationship is obtained from Eq. (1).

3 − p∗
(
3 + 2 w∗2

)
+ p∗ (3 − 2 w∗) w∗ p∗TO

3 R
= 0 (2)

In the above equation, TCP window size w∗ in steady
state is assumed to be larger than or equal to 3. Under this
assumption, the probability of detecting packet loss due to
TCP timeouts, p∗TO, is given by [18]

p∗TO � 3
w∗ (3)

By solving in Eqs. (2) and (3) for w∗, TCP window size w∗

in steady state is obtained as

w∗ � 1
2

(
−3 +

√
6 + 21 p∗√

p∗

)
(4)

TCP throughput T ∗ in steady state is then given by

T ∗ ≡ w∗

R
� 1

2 R

(
−3 +

√
6 + 21 p∗√

p∗

)
(5)

Since TCP socket buffer size is assumed to be larger than the
bandwidth-delay product per TCP connection, packet loss is
expected to occur only because of network congestion. Let N
be the number of TCP connections, and B the bottleneck link
bandwidth. Under these conditions, total throughput for all
TCP connections N T ∗ equals the bottleneck link bandwidth
B in steady state. Therefore,

B = N T ∗ � N

2 R

(
−3 +

√
6 + 21 p∗√

p∗

)
(6)

is obtained from Eq. (5). By solving this equation for p ∗, the
packet loss probability in steady state is derived as

p∗ �
(
−2 +

2 B R

N
+

2
3

(
B R

N

)2
)−1

(7)

From the above equation, one can find that the packet loss
probability in a network p∗ in steady state is determined only
by the bandwidth-delay product per TCP connection (i.e.,
B R/N).

When the packet loss probability in steady state is p∗ and the
throughput for all TCP connections is T ∗, only a fraction p∗ of

packets are discarded in the network. So, effective throughput
(i.e., goodput) for a TCP connection G∗ is given by

G∗ ≡ T ∗(1 − p∗) (8)

Next, a case when the TCP socket buffer size W is smaller
than the bandwidth-delay product per TCP connection (TCP
throughput × round-trip time). In this case, TCP window
size cannot be fully increased regardless of the available
bandwidth. Accordingly, TCP throughput T ∗ is limited by

T ∗ =
W

R
(9)

When TCP socket buffer size W is smaller than the
bandwidth-delay product per TCP connection, the bottleneck
link bandwidth cannot be utilized at 100%. Provided that the
packet loss caused by background traffic is negligible, the
packet loss probability in steady state p∗ is given by

p∗ = 0 (10)

Thus, the effective throughput for a TCP connection G ∗ in
steady state becomes

G∗ ≡ T ∗(1 − p∗) = T ∗ =
W

R
(11)

From Eqs. (8) and (11), the GridFTP goodput (total effective
throughput for all TCP connections) G∗ is given as a function
of the TCP socket buffer size W , the number of parallel TCP
connections N , round-trip time R, and the bottleneck link
bandwidth B; i.e.,

G∗ � min
(

N W

R
,
N (1 − p∗)

2 R

(
−3 +

√
6 + 21 p∗√

p∗

))
(12)

Thus, the optimal number of parallel TCP connections is
obtained by determining N that maximizes Eq. (12); i.e., from
Eq. (12), the optimal value of N is derived as

N =
(
3 B R − 3 W −√

3
√

9 B2 R2 − 16 B R W + 7 W 2
)

× B R

9 B R − 6 W
(13)

On the contrary, Eq. (12) indicates that for a given number of
parallel TCP connections, N , the TCP socket buffer size W
should be large enough to maximize G∗ in Eq. (12).

V. NUMERICAL EXAMPLES

In what follows, the effect of the number of parallel TCP
connections and TCP socket buffer size on GridFTP perfor-
mance has been quantitatively investigated through several
numerical examples of the steady state analysis.

First, GridFTP goodput (total goodput of all TCP connec-
tions) G∗ in steady state is shown in Fig. 2. In this figure, we
use the following parameters: the bottleneck link bandwidth
B = 8.3 [packet/ms] (corresponding to 100 [Mbit/s] when
a packet size is 1500 [byte]) and TCP socket buffer size
W = 64 [Kbyte]. The round-trip time for TCP connections
R and the number of parallel TCP connections N are varied.
In addition, the packet loss probability for GridFTP in steady
state is plotted in Fig. 3.

50
100

150

200

R
10

20

30

40

50

N
0
2
4
6
8

G

50
100

150R

Fig. 2. GridFTP goodput G∗ (effect of round-trip time R and the number
of parallel TCP connections N) (B = 8.3 [packet/ms], W = 64 [Kbyte])

The followings regarding GridFTP goodput can be observed
from these figures. First, from Fig. 2, the number of parallel
TCP connections N should be large for utilizing the bottleneck
link bandwidth at almost 100%. The required number of
parallel TCP connections N for full link utilizing is almost
proportional to the round-trip time for TCP connections. This
phenomenon is in agreement with simulation results (see, e.g.,
[8]). Second, GridFTP goodput decreases slightly with the
further increase in the number of parallel TCP connections.
This tendency appears obviously for a small round-trip time.
This is because the packet loss probability increases as the
number of parallel TCP connections N increases and/or round-
trip time for TCP connections R decreases [8], as can be seen
from Fig. 3.

We then focus on the effect of the number of parallel TCP
connections N and TCP socket buffer size W on GridFTP
goodput and the packet loss probability in steady state. The
GridFTP goodput and packet loss probability for different
numbers of parallel TCP connections N and TCP socket buffer
sizes W is shown in Figs. 4 and 5, respectively. The bottleneck
link bandwidth is set to B = 8.3 [packet/ms], and the round-
trip time for TCP connections at R = 100 [ms].

From Fig. 4, one can find that the TCP socket buffer size
W and the number of parallel TCP connections N must be
appropriately configured for fully utilizing the bottleneck link
bandwidth. For instance, when the TCP socket buffer size
W is small (e.g., 16 [Kbyte]), the number of parallel TCP
connections N should be very large. Accordingly, configuring
the TCP socket buffer size W to a sufficiently large value
is desired for avoiding an extremely large number of parallel
TCP connections N .

As the number of parallel TCP connections N increases,
the packet loss probability for GridFTP increases according
to Fig. 5. Also, the packet loss probability for GridFTP is

50
100

150

200

R
10

20

30

40

50

N
0

0.005
0.01

0.015
p

50
100

150R

Fig. 3. GridFTP packet loss probability p∗ (effect of round-trip time R and
the number of parallel TCP connections N) (B = 8.3 [packet/ms], W =
64 [Kbyte])

20

40

60
W

10

20

30

40

50

N
0

0.25
0.5

0.75
1

G

20

40

60
W

Fig. 4. GridFTP goodput G∗ (effect of the number of parallel TCP
connections N and TCP socket buffer size W) (B = 8.3 [packet/ms],
R = 100 [ms])

independent of the TCP socket buffer size W . Based on these
observations, a guideline for tuning GridFTP control parameter
is to allocate as large a TCP socket buffer size W as possible,
and to establish the number of parallel TCP connections N
that can fully utilize the bottleneck link bandwidth. Note that
the bandwidth-delay product of the network is in practice the
upper-limit of the TCP socket buffer size W .

Next, effect of the bottleneck link bandwidth on the optimal
parameter configuration of GridFTP is investigated. Figure 6
is a result with a larger bottleneck link bandwidth B (B =
16.6 [packet/ms]) than that of Fig. 2. From this figure, it can

20

40

60
W

10

20

30

40

50

N
0

0.001
0.002
0.003
0.004
p

20

40

60
W

Fig. 5. GridFTP packet loss probability p∗ (effect of the number of parallel
TCP connections N and TCP socket buffer size W) (B = 8.3 [packet/ms],
R = 100 [ms])

50
100

150

200

R
10

20

30

40

50

N
0
5

10
15

G

50
100

150R

Fig. 6. GridFTP goodput (N × G∗) (effect of round-trip time R and the
number of parallel TCP connections N) (B = 16.6 [packet/ms], W =
64 [Kbyte])

be found that the number of parallel TCP connections should
be increased accordingly when the bottleneck link bandwidth
is increased. However, by comparing Figs. 2 and 6, one can
find that goodput degradation for GridFTP for a large number
of parallel TCP connections is smaller for a larger bottleneck
link bandwidth. This is because the bandwidth-delay product
of each TCP connection increases as the bottleneck link
bandwidth increases, and, consequently, TCP timeouts less
likely to occur. This means that parameter configuration for
GridFTP is simpler in a faster or wider-area network.

Finally, the validity of our approximation analysis is exam-

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

G
rid

F
T

P
 G

oo
dp

ut
: G

* [M
bi

t/s
]

Number of TCP Flows: N

analysis
simulation

Fig. 7. Number of parallel TCP connections vs. GridFTP goodput (B =
8.3 [packet/ms], τ = 100 [ms], W = 64 [Kbyte])

ined through comparison of analysis and simulation results.
ns-2 simulator (version 2.28) [19] is used for all simulations. A
simple network topology of one hop is used in the simulation.
The bottleneck link bandwidth is set to B = 8.3 [packet/ms],
and the two-way propagation delay at τ = 100 [ms] or
τ = 20 [ms]. The packet size is fixed at 1,500 [byte], and
GridFTP server is modeled by aggregating FTP traffic sources.
Every simulation is run for 60 [s] while changing the number
of parallel TCP connections (i.e., the number of active FTP
traffic sources), and the goodput and packet loss probability
are measured.

First, simulation results for the two-way propagation delay
τ = 100 [ms] of the bottleneck link are shown in Figs 7 and 8.
These figures show the goodput and packet loss probability
for GridFTP when the number of parallel TCP connections
is changed. Also, analytic results, which are calculated based
on the average round-trip time for TCP connections obtained
by simulation, are plotted. From these figures, one can find
that the GridFTP goodput and packet loss probability are
accurately estimated by our steady state analysis.

Simulation results for a small two-way propagation delay
of the bottleneck link (τ = 20 [ms]) are shown in Figs. 9
and 10. Compared to the case with larger two-way propagation
delay (Figs. 7 and 8), it can be found that analytic results
deviate from simulation results, in particular, when there are
a large number of parallel TCP connections (e.g., N = 50).
This phenomenon can be explained by the following reason. In
a network with a small bandwidth-delay product and a large
number of parallel TCP connections, window size for each
TCP connection becomes small so that TCP timeouts are more
likely to occur. However, the probability of detecting packet
loss due to TCP timeouts, p∗

TO, is approximated by Eq. (3),
which should not be used when the packet loss probability
is large [18]. More accurate modeling of the probability of
detecting packet loss due to TCP timeouts, p∗

TO, is necessary,
but it is beyond the scope of the current paper.

 0

 0.005

 0.01

 0.015

 0.02

 0 10 20 30 40 50

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty
: p

*

Number of TCP connections: N

analysis
simulation

Fig. 8. Number of parallel TCP connections vs. GridFTP packet loss
probability (B = 8.3 [packet/ms], τ = 100 [ms], W = 64 [Kbyte])

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

G
rid

F
T

P
 G

oo
dp

ut
: G

* [M
bi

t/s
]

Number of TCP Flows: N

analysis
simulation

Fig. 9. Number of parallel TCP connections vs. GridFTP goodput (B =
8.3 [packet/ms], τ = 20 [ms], W = 64 [Kbyte])

However, it should be noted that our steady state analysis is
sufficiently usable in practice for optimizing control parameter
for GridFTP. Namely, recall that the guideline for GridFTP
parameter tuning is to use a sufficiently large TCP socket
buffer size W and to configure the number of parallel TCP
connections for fully utilizing the bottleneck link bandwidth.
Hence, effect of the modeling error in an extremely larger
number of parallel TCP connections can be negligible for
parameter configuration purposes.

VI. CONCLUSIONS AND FUTURE TOPICS

In this paper, we have investigated the optimal parameter
configuration for GridFTP, i.e., the number of parallel TCP
connections and TCP socket buffer size, by performing a
steady state analysis for GridFTP. First, a continuous-time
model for GridFTP has been derived by aggregating multi-
ple TCP continuous-time models. Steady state performance
metrics (e.g., GridFTP goodput and packet loss probability)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10 20 30 40 50

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty
: p

*

Number of TCP connections: N

analysis
simulation

Fig. 10. Number of parallel TCP connections vs. GridFTP packet loss
probability (B = 8.3 [packet/ms], τ = 20 [ms], W = 64 [Kbyte])

have been derived using our GridFTP model. By focusing on
the number of TCP connections and TCP socket buffer size,
we have also derived the optimal parameter configuration for
GridFTP, and quantitatively show performance limitations of
GridFTP through analytic and simulation results. Our GridFTP
parameter tuning guideline is to allocate as large a TCP socket
buffer size W as possible (but no more than the bandwidth-
delay product of the network) and to establish the number of
parallel TCP connections N that can full utilize the bottleneck
link bandwidth according to Eq. (13). We have also validated
our approximate analysis by comparing simulation results with
analytic ones.

Future research topics include improving the accuracy of our
approximate analysis (e.g., accurate modeling of TCP timeout
mechanism) and performing analysis of GridFTP in more
generic network configurations with, for instance, background
traffic and several different versions of TCP connections. Also
important is applying our analytic results for automatically
optimizing GridFTP performance. In [20], we are currently
working on designing an automatic parameter configuration
mechanism for GridFTP, which utilizes our analytic results
and has compatibility with existing GridFTP servers.

REFERENCES

[1] J. Postel, “Transmission control protocol,” Request for Comments (RFC)
793, Sept. 1981.

[2] W. Allcock et al., “GridFTP: Protocol extensions to FTP for the Grid,”
GGF Document Series GFD.20, Apr. 2003, also available as http://www.
gridforum.org/GFD.20.pdf.

[3] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffer tuning,”
in Proceedings of ACM SIGCOMM ’98, vol. 28, Oct. 1998.

[4] T. Dunigan, M. Mathis, and B. Tierney, “A TCP tuning daemon,” in
Proceedings of SuperComputing: High-Performance Networking and
Computing, Nov. 2002.

[5] S. Thulasidasan, W. Feng, and M. K. Gardner, “Optimizing GridFTP
through dynamic right-sizing,” in Proceedings of IEEE International
Symposium on High Performance Distributed Computing, June 2003.

[6] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSockets: The case for
application-level network striping for data intensive applications using
high speed wide area networks,” in Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing, Nov. 2000.

[7] T. J. Hacker and B. D. Athey, “The end-to-end performance effects of
parallel TCP sockets on a lossy wide-area network,” in Proceedings of
the 16th IEEE-CS/ACM International Parallel and Distributed Process-
ing Symposium (IPDPS), Aug. 2001.

[8] L. Qiu, Y. Zhang, and S. Keshav, “On individual and aggregate TCP
performance,” in Proceedings of Internetl Conference on Network Pro-
tocols, Oct. 1999, pp. 203–212.

[9] D. Lu, Y. Quao, P. Dinda, and F. Bustamante, “Modeling and taming
parallel TCP on the wide area network,” in Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium,
Apr. 2005.

[10] H. Ohsaki, J. Ujiie, and M. Imase, “On scalable modeling of TCP con-
gestion control mechanism for large-scale IP networks,” in Proceedings
of IEEE SAINT 2005, Feb. 2005, pp. 361–369.

[11] “Global Grid Forum,” http://www.ggf.org/.
[12] J. Postel and J. Reynolds, “File transfer protocol (FTP),” Request for

Comments (RFC) 959, Oct. 1985.
[13] R. Elz and P. Hethmon, “FTP security extensions,” Request for Com-

ments (RFC) 2228, Oct. 1997.
[14] P. Hethmon and R. Elz, “Feature negotiation mechanism for the file

transfer protocol,” Request for Comments (RFC) 2389, Aug. 1998.
[15] “Globus Toolkit,” available at http://www.globus.org/.
[16] S. Floyd, “Highspeed TCP for large congestion windows,” Internet Draft

draft-ietf-tsvwg-highspeed-01.txt, Aug. 2003.
[17] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”

IEEE Control Systems Magazine, vol. 22, no. 1, pp. 28–43, Feb. 2002.
[18] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP

throughput: a simple model and its empirical validation,” in Proceedings
of ACM SIGCOMM ’98, Sept. 1998, pp. 303–314.

[19] “The network simulator – ns2,” available at http://www.isi.edu/nsnam/
ns/.

[20] T. Ito, H. Ohsaki, and M. Imase, “Automatic parameter configuration
mechanism for data transfer protocol GridFTP,” submitted to the 2006
International Symposium on Applications and the Internet (SAINT 2006),
July 2005.

