
On Maximizing iSCSI Throughput
using Multiple Connections

with Automatic Parallelism Tuning
Fumito Inoue∗, Hiroyuki Ohsaki∗, Yoshihiro Nomoto † and Makoto Imase∗

∗ Graduate School of Information Science and Technology Osaka University
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

E-mail: {f-inoue, oosaki, imase}@ist.osaka-u.ac.jp
† NTT Service Integration Laboratories NTT Corporation

3-9-11, Midori-Cho, Musashino-Shi, Tokyo, 180-8585, Japan
E-mail: nomoto.yoshihiro@lab.ntt.co.jp

Abstract— In this paper, we propose an iSCSI-APT (iSCSI with
Automatic Parallelism Tuning) that maximizes iSCSI throughput
in long-fat networks. In recent years, as a protocol for build-
ing SANs (Storage Area Networks), iSCSI has been attracting
attention for its low cost and high compatibility with existing
networking infrastructure. However, it has been known that
iSCSI throughput degrades in a long-fat network. iSCSI supports
a feature called multiple connections, which allows data delivery
over multiple TCP connections in a single session. However,
for effective utilization of the multiple connections feature, the
number of multiple connections must be appropriately configured
according to the network status. In this paper, we propose the
iSCSI-APT that automatically adjusts the number of multiple
connections according to the network status. Through experi-
ments using our iSCSI-APT implementation, we demonstrate that
iSCSI-APT operates quite effectively regardless of the network
delay.

I. INTRODUCTION

Because of rapid advancement and development of net-
working technologies, strong requirements on remote backup
using a communication network has been emerging [1]. Since
the amount of data handled by organizations or individuals
has been significantly increasing, remote backup is getting
more and more important. Among several approaches for data
backup, remote backup should be promising for safety because
backup data is stored at a geographically different location.
One of major technologies for remote backup is SAN (Storage
Area Network), which builds a network of storage devices
connected by a communication network [2].

iSCSI (Internet Small Computer System Interface), which
encapsulates a stream of SCSI CDBs (Command Descriptor
Blocks) in a TCP/IP network, is one of the promising protocols
for SANs because of its low cost and compatibility with
existing infrastructures [3, 4]. iSCSI was standardized by IETF
in 2004, and has been widely adopted in a large numbers of
sites recent years [5]. iSCSI simply allows interconnection of
SCSI devices via a TCP/IP network. The iSCSI layer is located

between the SCSI and TCP layers. Hence, using the iSCSI
protocol, existing applications can extend their reachability
to remote storage devices as well as local ones without any
modification to those applications.

iSCSI does realize global connectivity to remote storage
devices, but it still has several issues to be solved — in
particular, performance issues [6]. iSCSI naturally utilizes
the TCP (Transmission Control Protocol) for encapsulating
SCSI CDBs, which results in low end-to-end performance in
a long-fat network. Remote backup is a bandwidth-intensive
application in a sense that a large volume of data is transferred
over a wide-area network. For realization of efficient and
effective remote backup using the iSCSI protocol, it is crucial
to achieve high iSCSI throughput even in a long-fat network.

There exist several factors that affect the performance
of the iSCSI protocol in a long-fat networks. One of the
most significant factors is the TCP performance in a long-
fat networks. Performance degradation of the TCP protocol in
a long-fat network is a well-known problem, and there have
been a huge number of researches for improving the TCP per-
formance [7, 8]. From our past studies on improving the TCP
performance [9, 10], we believe that a technique of parallel
TCP connections, which uses multiple TCP connections for
data delivery, is one of promising approaches for achieving
high TCP performance in a long-fat network.

The iSCSI protocol supports a feature called multiple con-
nections, which allows data delivery over multiple TCP con-
nections in a single session [5]. With the multiple connections
feature, it is expected that the high iSCSI performance is
realized in a long-fat network. However, as we will explain in
Section II, the iSCSI performance is not always improved with
the multiple connections feature. On the contrary, the iSCSI
performance is further degraded with an appropriate usage of
the multiple connections feature.

For effective use of the multiple connections feature, the

parallelism (i.e., the number of multiple TCP connections
established in parallel) must be appropriately configured ac-
cording to network status.

In this paper, we therefore propose a parallelism tuning
mechanism for the iSCSI protocol called iSCSI-APT (iSCSI
with Automatic Parallelism Tuning), which automatically ad-
justs the number of multiple connections according to network
status. iSCSI-APT is primarily designed for bulk data transfer
applications such as remote backup. iSCSI-APT measures
the network status in a passive way, and automatically ad-
justs the number of multiple connections so that the iSCSI
throughput is maximized. iSCSI-APT operates only at an
iSCSI initiator (e.g., host) ; i.e., iSCSI-APT can work with any
iSCSI-compliant target (e.g., storage). iSCSI-APT is backward
compatible since it does not require any modification to
iSCSI targets. We implemented our iSCSI-APT in an iSCSI
initiator software. With our iSCSI-APT implementation, we
quantitatively investigate the effectiveness of our iSCSI-APT
through experiments, and demonstrate that our iSCSI-APT
maximizes the iSCSI throughput in a long-fat network.

The organization of this paper is as follows. Section II sum-
marizes related works. Section III briefly explains the multiple
connections feature of the iSCSI protocol. The overview and
detail of our iSCSI-APT is described in Section IV. Section V
is devoted for performance evaluation of our iSCSI-APT
using our iSCSI-APT implementation and a network emulator.
Finally, Section VI summarizes this paper and discusses future
works.

II. RELATED WORKS

There have been several researches on performance eval-
uation of the iSCSI protocol in long-fat networks [11-13].
In [11-13], the performance of the iSCSI protocol is evalu-
ated using experiment [11], simulation [12] or mathematical
analysis [13]. Consequently, it has been shown that the iSCSI
throughput is significantly degraded when the end-to-end delay
(i.e., the delay between iSCSI initiator and target) is large.

Also, the effectiveness of the multiple connections feature
of the iSCSI protocol is studied in [7, 14]. Those papers
show that with the multiple connections feature, the iSCSI
protocol achieves higher throughput than without the multiple
connections feature. Those studies, however, examine just one
side of the multiple connections feature of the iSCSI protocol.
The negative effect of the multiple connections feature —
performance loss caused by inappropriate configuration of
the number of multiple connections — has not been well
investigated.

Various solutions for preventing degradation of the iSCSI
throughput in a long-fat network have been proposed. For
instance, to prevent degradation of the iSCSI throughput,
approaches utilizing multiple links [15, 16] and approaches

replacing/modifying the transport protocol [7] have been pro-
posed.

In [15], the iSCSI throughput is improved using multiple
connections, each of which traverses a different path using
a VPN multihoming. Also, in [16], the iSCSI throughput is
improved using multiple connections, each of which traverses
a different path using multiple LAN ports and dedicated
routers.

On the other hand, in [7], the authors propose a change to
the TCP congestion control algorithm for improving fairness
among competing TCP connections and also improving the
iSCSI throughput.

Approaches using multiple links interfaces are not general;
i.e., they force significant restrictions on network environment.
Also, modification to the transport protocol, TCP, is not
realistic since a large number of iSCSI devices have already
been in operation and those devices are usually heterogeneous.
Therefore, it is desirable to improve the iSCSI throughput in
a way that is independent of the network environment and
requires no modification to the transport protocol.

On the other hand, there exist a large number of studies on
parallel TCP connections [8, 17-19, 10]. For instance, in [8,
10], authors evaluate the performance of parallel TCP connec-
tions. It is shown that, even though parallel TCP connections
is generally effective, it cannot realize high TCP throughput
unless the number of parallel TCP connections is properly
configured. This suggests that, if the number of multiple
connections is too small or too large, the iSCSI throughput is
degraded. Namely, although the multiple connections feature
of the iSCSI protocol is effective for achieving high iSCSI
throughput, it is important to configure the number of multiple
connections appropriately.

III. ISCSI MULTIPLE CONNECTIONS

In this section, we briefly explain the multiple connection
feature of the iSCSI protocol. Refer to [5] for the details of
the iSCSI protocol.

iSCSI supports a feature called multiple connections, which
allows data delivery over multiple TCP connections in a single
session1 (Fig. 1) [5].

For any iSCSI request issued over a TCP connection,
the corresponding response and/or other related PDUs must
be sent over the same connection. This restriction is called
connection allegiance [5]. This significantly simplifies the
implementation of the iSCSI protocol, enabling hardware-
based implementation of the iSCSI protocol.

The maximum number of TCP connections, which is nego-
tiated between an iSCSI initiator and an iSCSI target, is stored
in an iSCSI session parameter called MaxConnections.
The value of MaxConnections is negotiated between the

1Note that, in reality, not all iSCSI implementations support the multiple
connections.

TCP connection
iSCSI session

establish multiple TCP
connections N
(N < MaxConnections)

iSCSI
initiator

SCSI response

iSCSI
target

SCSI command

Fig. 1: iSCSI supports multiple TCP connections, which al-
lows data delivery over multiple TCP connections in a
single session.

iSCSI initiator and the iSCSI target at the login phase of an
iSCSI session.

IV. ISCSI-APT

In this paper, we propose a parallelism tuning mechanism
for the iSCSI protocol called iSCSI-APT (iSCSI with Auto-
matic Parallelism Tuning), which automatically adjusts the
number of multiple connections according to network status.
iSCSI-APT operates only at an iSCSI initiator (e.g., host) ; i.e.,
iSCSI-APT can work with any iSCSI-compliant target (e.g.,
storage). iSCSI-APT is backward compatible since it does not
require any modification to iSCSI targets.

iSCSI-APT adjusts the number of multiple connections
according to the network status using the same algorithm
as GridFTP-APT (GridFTP with Automatic Parallelism Tun-
ing) [9]. GridFTP-APT searches for the optimal number of
TCP connections using a numerical computation algorithm for
a maximization problem. GridFTP-APT utilizes the fact that
GridFTP throughput is a convex function for the number of
multiple connections [10].

iSCSI-APT is primarily designed for bulk data transfer
applications such as remote backup. It is because the problem
of throughput degradation in long-fat networks is serious when
a large amount of data is transfered continuously.

First, we explain iSCSI-APT (Fig. 2).
iSCSI-APT transfers data as a series of blocks called chunk.

Chunk transfer is realized by transferring multiple iSCSI
PDU (Protocol Data Unit)(Fig. 3). iSCSI-APT measures the
iSCSI throughput G for every chunk transfer. By measuring
the iSCSI throughput G, iSCSI-APT adjusts the number of
multiple connections N and the chunk size x (the data size
x that should be transfered by the time the next number of
multiple connections is determined).

iSCSI-APT re-calculates the number of multiple connec-
tions N after every chunk transfer (after completing transfer
of the last iSCSI PDU that is part of the chunk) using the

TCP connection

iSCSI initiator
 with
 iSCSI-APT

iSCSI target

1. transfer a chunk and
 measure iSCSI throughput G

data chunk

2. determine the number of
 connections N

3. change the number of
 multiple connections to N

iSCSI session

Fig. 2: Overview of iSCSI-APT operation (to data transfer
from iSCSI initiator to iSCSI target); By measuring
the iSCSI throughput G, iSCSI-APT determines the
number of multiple connections N .

Chunk Size X

Data-Out PDU Data-Out PDU Data-Out PDU Data-Out PDU

MaxBurstLength

MaxRecvDataSegmentLength

MaxBurstLength

Fig. 3: iSCSI-APT transfers data as a series of blocks called
chunk. Chunk transfer is realized by transferring mul-
tiple iSCSI PDU.

algorithm of GridFTP-APT [9]. According to the re-calculated
value N , iSCSI-APT updates the number of multiple connec-
tions.

As mentioned above, measuring the iSCSI throughput G

for every chunk transfer, iSCSI-APT determines the number
of multiple connections N , which is used for the next chunk
transfer.

In what follows, we explain the iSCSI-APT operations
when an iSCSI initiator transfers data to an iSCSI target.
Specifically, we explain (1) the method of transfering chunk,
(2) the method of measuring the iSCSI throughput and (3) the
method of updating the number of multiple connections.

Data transfer in the other direction, i.e., data transfer from
an iSCSI target to an iSCSI initiator, can also be realized sim-
ilarly. Refer to [9] for the details of the method of determining
the chunk size X and the method of determining the number
of multiple connections N .

(1) Method of chunk transfer
iSCSI-APT transfers data until the total size of trans-
fered data is lager than the chunk size x. Then iSCSI-

iSCSI initiator iSCSI target

Data-Out PDU in chunk

Chunk Size X

Data-Out PDU Data-Out PDU

Fig. 4: Method of chunk transfer (from an iSCSI initiator to an
iSCSI target); iSCSI-APT transfers a chunk as multiple
iSCSI PDUs.

APT measure the iSCSI throughput. According to the
measured iSCSI throughput, iSCSI-APT adjusts the
number of multiple connections. iSCSI-APT predicts
the iSCSI throughput of the next chunk transfer, and
dynamically configures the chunk size so that the
chunk transfer time becomes as fixed as possible.
iSCSI-APT transfers chunk as follows.
Chunk transfer is realized by transferring multiple
iSCSI PDUs (Fig. 4). SCSI Data-Out and SCSI
Data-In are the main vehicles by which SCSI data
payload is carried between initiator and target [5].
The maximum size of the iSCSI PDU, which is
negotiated between an iSCSI initiator and an iSCSI
target, is stored in an iSCSI session parameter called
MaxRecvDataSegmentLength.
In iSCSI, when the multiple connection is enabled,
SCSI CDB (Command Descriptor Block) is usu-
ally transfered on each TCP connection in parallel.
Note that mapping of each SCSI CDB to a TCP
connection is implementation dependent; i.e., it has
not been specified in the iSCSI standard [5]. iSCSI-
APT calculates the total size of iSCSI PDUs that
are transfered on over TCP connections. When the
total size of transfered iSCSI PDUs is larger than the
chunk size x, iSCSI-APT knows that chunk transfer
has been completed.

(2) Measurement method of the iSCSI throughput The
iSCSI throughput is measured by dividing chunk size
X by chunk transfer time T . Specifically, iSCSI-APT
measures the iSCSI throughput as follows.
iSCSI-APT obtains chunk transfer time T by mea-
suring the duration between the time when the first
iSCSI PDU in a chunk is transfered, and the time
when the last iSCSI PDU in the chunk is transfered
(the duration between the time when the first iSCSI
PDU in chunk is transfered and the time when the

iSCSI initiator

R2T PDU

R2T PDU

first Data-out PDU X of Chunk

last Data-out PDU X of Chunk

R2T PDU

 time to
chunk transfer T

iSCSI target

Fig. 5: Measurement method of chunk transfer time; iSCSI-
APT measures the duration between the time when the
first iSCSI PDU in a chunk is transfered and the time
when the last iSCSI PDU in the chunk is transfered.

iSCSI initiator

iSCSI-APT

iSCSI target

3. open/close one or more connections

 2. determine the number of
 multiple connections N 1. receive an R2T PDU after

 sending the last Data-Out PDU

Fig. 6: Method of specifying the number of multiple connec-
tions; iSCSI-APT notifies the iSCSI initiator of the
change in the number of multiple connections.

R2T PDU is received (Fig. 5)).
(3) Method of specifying the number of multiple connec-

tions
iSCSI-APT updates the number of multiple connec-
tions by opening and/or closing connections after
completing chunk transfer (Fig. 6). When iSCSI-APT
increases the number of multiple connections, iSCSI-
APT notifies the iSCSI initiator that the number
of multiple connections is increased. In contrast,
when iSCSI-APT decreases the number of multiple
connections, iSCSI-APT notifies the iSCSI initiator
that the number of multiple connections is decreased.
Note that when iSCSI-APT decreases the number
of multiple connections, iSCSI-APT closes the TCP
connection after completing all unfinished SCSI
CDB transfers.

V. EVALUATION OF ISCSI-APT

To evaluate iSCSI-APT, we performed experiments in an
emulated long-fat network using our iSCSI-APT implementa-
tion and a network emulator.

chunk

1 [Gbit/s]
receiving
 host

iSCSI initiator

data

PC router

delay: 5 [ms]
bandwidth: 1 [Gbit/s]

dummynet

1 [Gbit/s]

iSCSI target

sending
 host

Fig. 7: Network configuration used for the experiments; We
transfered continuous data from the iSCSI initiator to
the iSCSI target by issuing SCSI write commands of
1 [Mbyte]

TABLE I

PARAMETER CONFIGURATION USED IN EXPERIMENTS

Bandwidth of network emulator 1 [Gbit/s]
Buffer size of router 500 [packet]
Queue discipline of router DropTail
TCP socket buffer size 1 [Mbyte]
Initial number of parallel TCP connections N0 [9] 4
Multiplicative increase factor α [9] 2
Target value of chunk transfer time ∆ [9] 3 [s]
MaxConnections 500
MaxBurstLength 1 [Mbyte]
ImmediateData no
InitialR2T yes

Figure 7 shows the network configuration used for those
experiments. We used the same computers with an Intel
Xeon 3.06 [GHz] processor with 2 [Gbyte] memory for the
iSCSI target, iSCSI initiator and the network emulator. For
the iSCSI target and iSCSI initiator, we used our iSCSI-
APT implementation based on UNH-iSCSI 1.7.0 [20] running
on Debian GNU/Linux 3.1 (Linux kernel 2.6.8). We used
FreeBSD 6.1 and dummynet 1.3.14.1 for the network emulator.
Unless explicitly stated, parameters shown in Tab. I are used
in the following experiments. In the following experiments,
we transfered continuous data from the iSCSI initiator to the
iSCSI target by issuing SCSI write commands of 1 [Mbyte]
To avoid the bottleneck of disk access, the iSCSI initiator was
modified to generate a random bit sequence, and the iSCSI
target was modified to simply discard the received data.

First, to investigate the effectiveness of iSCSI-APT, we mea-
sured the iSCSI throughput when enabling/disabling iSCSI-
APT. Figure 8 shows the evolution of iSCSI throughput when
iSCSI-APT is enabled/disabled. When iSCSI-APT is disabled,

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50

iS
C

S
I t

hr
ou

gh
pu

t [
M

bi
t/s

]

Time [s]

iSCSI-APT
N=1
N=4
N=8

N=16

Fig. 8: Evolution of iSCSI throughput (the delay of network
emulator is 5 [ms]); When iSCSI-APT is enabled,
iSCSI-APT optimizes the number of multiple connec-
tions at approximately 20 [s] and maximizes iSCSI
throughput.

the number of multiple connections N is fixed at 1, 4, 8 and
16. The delay of the network emulator is 5 [ms].

From the result when iSCSI-APT is disabled, we find that
the effectiveness of iSCSI greatly depends on the number
of multiple connections. In this experiment, we find that
iSCSI throughput is maximized when the number of multiple
connections N is 4.

On the other hand, we find that iSCSI-APT optimizes
the number of multiple connections at approximately 20 [s]
and maximizes iSCSI throughput when iSCSI-APT is en-
abled. Note that the maximum iSCSI throughput is only
640 [Mbit/s] nevertheless the bandwidth of the network em-
ulator is 1 [Gbit/s]. This degradation of iSCSI throughput is
caused by the performance limitation of the iSCSI implemen-
tation [21] on which our iSCSI-APT is implemented.

From these result, we demonstrate that iSCSI-APT adjusts
the number of multiple connections automatically, and maxi-
mizes the iSCSI throughput.

To investigate the effect of the bottleneck link delay on
iSCSI throughput, we performed experiments by changing the
delay of the network emulator. Figures 9 shows the iSCSI
throughput when the delay of the network emulator is changed
as 10–40 [ms].

For comparison purposes, iSCSI throughput in steady state
when disabling iSCSI-APT and fixing the number of multiple
connections at 1 is also plotted in Fig. 9. Figure 9 shows that
the throughput when iSCSI-APT is enabled is much larger
than the throughput when iSCSI-APT is disabled. Note that
iSCSI throughput degrades when the bottleneck link delay is

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40

iS
C

S
I t

hr
ou

gh
pu

t [
M

bi
t/s

]

Link delay [ms]

iSCSI-APT is enabled
iSCSI-APT is disabled

Fig. 9: Bottleneck link delay vs. iSCSI throughput; the
throughput when iSCSI-APT is enabled is much larger
than the throughput when iSCSI-APT is disabled.

large. Again, this degradation of iSCSI throughput is caused
by the performance limitation of the iSCSI implementation
[21] on which our iSCSI-APT is implemented.

From these observations, we conclude that iSCSI-APT
operates effectively regardless of the bottleneck link delay.

VI. CONCLUSION

In this paper, we propose iSCSI-APT (iSCSI with Au-
tomatic Parallelism Tuning) that automatically adjusts the
number of TCP connections appropriately according to the
condition of the network. We have also investigated the
effectiveness of iSCSI-APT in an emulated long-fat network
using our iSCSI-APT implementation and a network emulator.
Consequently, we have demonstrated that iSCSI-APT adjusts
the number of TCP connections automatically and maximizes
iSCSI throughput.

Mainly for simplicity and ease of implementation, we used
completely identical algorithm as GridFTP-APT [9], However,
the design concept of GridFTP protocol and iSCSI protocol
greatly differ. We believe that the further improvement of
iSCSI-APT performance is possible by taking account of
several characteristic of the iSCSI protocol. As future work, it
is therefore of great value to further enhance the performance
of out iSCSI-APT.

ACKNOWLEDGEMENTS

The authors would like to thank Masayuki Murata and
Takeshi Ito of Osaka University for their fruitful suggestions.

REFERENCES

[1] R. P. King, N. Halim, H. Garcia-Molina, and C. A. Polyzois, “Manage-
ment of a remote backup copy for disaster recovery,” ACM Transactions
on Database Systems (TODS), vol. 16, pp. 338–368, June 1991.

[2] W. Zheng, F. Wang, and Y. Y. Zhang, “A new backup model based
on SAN system,” in Proceedings of The 8th International Conference
on Computer Supported Cooperative Work in Design (CSCWD 2004),
pp. 702–707, July 2003.

[3] K. Z. Meth and J. Satran, “Features of the iSCSI protocol,” IEEE
Communications Magazine, vol. 41, pp. 72–75, Aug. 2003.

[4] C. Mcknight, “Cost Analysis and Long Term Planning Over the
Lifecycle of an Enterprise Storage Solution,” Journal of Technology
Management & Innovation, vol. 1, pp. 87–95, Dec. 2006.

[5] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner,
“Internet Small Computer Systems Interface (iSCSI).” RFC 3720 (Pro-
posed Standard), Apr. 2004. Updated by RFCs 3980, 4850, 5048.

[6] W. Ng, B. Hillyer, E. Shriver, and E. Gabber, “Obtaining high per-
formance for storage outsourcing,” in Proceedings of the 1st USENIX
Conference on File and Storage Technologies, pp. 145–158, Jan. 2002.

[7] B. K. Kancherla, G. M. Narayan, and K. Gopinath, “Performance
evaluation of multiple TCP connections in iSCSI,” in Proceedings of
the 24th IEEE Conference on Mass Storage Systems and Technologies,
pp. 239–244, IEEE Computer Society, Sept. 2007.

[8] L. Qiu, Y. Zhang, and S. Keshav, “On individual and aggregate TCP
performance,” in Proceedings of Internetl Conference on Network Pro-
tocols, pp. 203–212, Oct. 1999.

[9] T. Ito, H. Ohsaki, and M. Imase, “GridFTP-APT: Automatic parallelism
tuning mechanism for data transfer protocol GridFTP,” in Proceedings
of 6th IEEE International Symposium on Cluster Computing and the
Grid (CCGrid2006), pp. 454–461, May 2006.

[10] T. Ito, H. Ohsaki, and M. Imase, “On parameter tuning of data transfer
protocol GridFTP in wide-area Grid computing,” in Proceedings of
Second International Workshop on Networks for Grid Applications
(GridNets 2005), pp. 415–421, Oct. 2005.

[11] Y. Lu and D. H. C. Du, “Performance study of iSCSI-based storage
subsystems,” IEEE Communications Magazine, vol. 41, pp. 76–82, Aug.
2003.

[12] Y. Lu, N. Farrukh, and D. H. C. Du, “Simulation study of iSCSI-based
storage system,” in Proceedings of 12th NASA Goddard & 21st IEEE
Conference of Mass Storage Systems and Technologies (MSST 2004),
pp. 101–110, Apr. 2004.

[13] C. M. Gauger, M. Kohn, S. Gunreben, D. Sass, and S. G. Perez,
“Modeling and performance evaluation of iSCSI storage area networks
over TCP/IP-based MAN and WAN networks,” pp. 915–923, Oct. 2005.

[14] G. Motwani and K. Gopinath, “Evaluation of advanced TCP stacks in the
iSCSI environment using simulation model,” Proceedings of the 22nd
IEEE/13th NASA Goddard Conference on Mass Storage Systems and
Technologies (MSST’05), pp. 210–217, Apr. 2005.

[15] N. Chishima, S. Yamaguchi, and M. Oguchi, “Analysis of performance
and TCP parameter in the case of multi-routing VPN access on iSCSI
storage,” IEICE DEWS2007, Feb. 2007.

[16] Q. K. Yang, “On performance of parallel iSCSI protocol for networked
storage systems,” in Proceedings of the 20th International Conference
on Advanced Information Networking and Applications (AINA 2006),
vol. 1, pp. 629–636, Apr. 2006.

[17] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSockets: The case for
application-level network striping for data intensive applications using
high speed wide area networks,” in Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing, Nov. 2000.

[18] T. J. Hacker, B. D. Athey, and B. Noble, “The end-to-end perfor-
mance effects of parallel TCP sockets on a lossy wide-area network,”
in Proceedings of the 16th IEEE-CS/ACM International Parallel and
Distributed Processing Symposium (IPDPS), pp. 434–443, Apr. 2002.

[19] D. Lu, Y. Quao, P. Dinda, and F. Bustamante, “Modeling and taming
parallel TCP on the wide area network,” in Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium,
Apr. 2005.

[20] “Software implementations of an initiator and a target– UNH-iSCSI.”
available at http://unh-iscsi.sourceforge.net/.

[21] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa, “Performance evalua-
tion of sequential storage access using iSCSI protocol in long-delayed
high throughput network,” in Proceedings of The 14th Data Engineering
Workshop (IEICE DEWS 2003), pp. 137–144, July 2003.

