
APSITT2008/Copyright 2008 IEICE 07SB0208

Implementation and Evaluation of GridFTP
Automatic Parallelism Tuning Mechanism for

Long-Fat Networks
Fumito Inoue, Takeshi Ito, Hiroyuki Ohsaki and Makoto Imase

Graduate School of Information Science and Technology, Osaka University
Yamadaoka, Suita, Osaka, 560-8531, Japan

E-mail: {f-inoue, t-itou, oosaki, imase}@ist.osaka-u.ac.jp

Abstract—In this paper, we present our implementation of
GridFTP-APT (GridFTP with Automatic Parallelism Tuning),
an extension to GridFTP for optimizing its performance in a
long-fat network. GridFTP has been used as a data transfer
protocol for effectively transferring a large volume of data
in Grid computing. GridFTP supports a feature called par-
allel data transfer that improves throughput by establishing
multiple TCP connections in parallel. However, to achieve
high GridFTP throughput, the number of TCP connections
should be optimized according to network condition. We
have proposed an automatic parallelism tuning mechanism
called GridFTP-APT that adjusts the number of parallel
TCP connections only using information measurable at Grid
middleware. In this paper, we first explain our implementa-
tion of GridFTP-APT based on the GridFTP client included
in the Globus Toolkit (globus-url-copy program). We then
investigate the effectiveness of GridFTP-APT in realistic
network environments through several experiments using
our GridFTP-APT implementation and a network emulator.
Consequently, we demonstrate the effectiveness of GridFTP-
APT in various network environments.

I. INTRODUCTION

GridFTP has been used as a protocol to effectively
transfer large volume data in Grid computing [1, 2].
GridFTP is designed to solve the existing TCP problems
and has various additional features to the existing FTP
for this purpose. These features include, for instance,
parallel data transfer using multiple TCP connections and
automatic negotiation of TCP socket buffer size.

It is known that the effectiveness of GridFTP depends
largely on control parameter configuration such as the
number of parallel TCP connections [3-5]. However, it is
difficult to configure GridFTP control parameters appropri-
ately according to the condition of a network. Although a
command set is defined in the GridFTP protocol for spec-
ifying the number of parallel TCP connections between
GridFTP server and client, its configuration method is not
specified in the GridFTP protocol specification [1, 2].

We have proposed GridFTP-APT (GridFTP with Au-
tomatic Parallelism Tuning) mechanism that automati-
cally adjusts the number of parallel TCP connections of
GridFTP [6]. GridFTP-APT operates on a GridFTP client,
and automatically adjusts the number of parallel TCP
connections so that the GridFTP goodput is maximized.
GridFTP-APT utilizes the fact that GridFTP goodput
is a convex function for the number of parallel TCP
connections [3]. GridFTP-APT searches for the optimal
number of parallel TCP connections using a numerical
computation algorithm for a maximization problem.

In this paper, we explain our implementation of
GridFTP-APT based on the GridFTP client included in the
GlobusToolkit, which is a de facto standard middleware
for Grid computing. Moreover, we evaluate the perfor-
mance of GridFTP-APT in realistic network environments
through several experiments using a network emulator.
We conduct experiments while changing the bandwidth
and propagation delay of the bottleneck link using the
network emulator. In such network environments, we
quantitatively evaluate the performance of GridFTP-APT.
We also investigate the performance of GridFTP-APT in a
network with background traffic or multiple GridFTP ses-
sions. Consequently, we show that GridFTP-APT operates
effectively in various network environments.

The structure of this paper is as follows. Section II
explains the overview of GridFTP-APT, the automatic
parallelism tuning mechanism for GridFTP. Section III
explains how we implement GridFTP-APT based on the
GridFTP client included in the Globus Toolkit. Section IV
quantitatively evaluates the performance of GridFTP-APT
under various network conditions through several exper-
iments using the network emulator. Finally, Section V
summarizes the paper and discusses future works.

II. AUTOMATIC PARALLELISM TUNING MECHANISM
FOR GRIDFTP

This section explains the overview of GridFTP-APT.
Refer to [6] for the details of GridFTP-APT.

GridFTP-APT is a mechanism executed on the GridFTP
client (Fig. 1). The basic idea of GridFTP-APT is that a
GridFTP client splits a file to transfer into blocks called
chunk, and adjusts the number of parallel TCP connections
at the end of every chunk transfer.

GridFTP-APT measures the goodput at every chunk
transfer. According to measurement results, GridFTP-APT
adjusts the number of parallel TCP connections so that the
GridFTP goodput is maximized using a numerical com-
putation algorithm for a maximization problem. GridFTP-
APT uses the GSS (Golden Section Search) algorithm, one
of numerical computation algorithms for a maximization
problem [7].

A. Adjusting the Number of Parallel TCP Connections

First, for applying the GSS algorithm, GridFTP-APT
searches the range of the number of parallel TCP con-
nections, in which the GridFTP goodput takes a convex
form.

APSITT2008/Copyright 2008 IEICE 07SB0208

Fig. 1: GridFTP-APT (GridFTP with Automatic Par-
allelism Tuning) overview; the basic idea of
GridFTP-APT is that a GridFTP client splits a file
to transfer into blocks called chunk, and adjusts the
number of parallel TCP connections at the end of
every chunk transfer.

GridFTP-APT starts from a small number of parallel
TCP connections, and multiplicatively increases the num-
ber of parallel TCP connections at every chunk transfer un-
til GridFTP goodput decreases. GridFTP-APT determines
the bracket — the range of the number of parallel TCP
connections covering the optimal value that maximizes the
GridFTP goodput.

In what follows, N is the number of parallel TCP
connections used for a chunk transfer, G(N) the GridFTP
goodput measured at the chunk transfer, and N−k the
number of parallel TCP connections used for the k-th
previous chunk transfer.

GridFTP-APT searches the bracket as follows.
1) Initialize the number of parallel TCP connections:

N ← N0 (1)

where N0 is the initial number of parallel TCP
connections.

2) Transfer a chunk while measuring the GridFTP
goodput G(N).

3) If the following inequality is satisfied, determine
the bracket as (N−2, N−1, N) and terminate the
algorithm.

G(N) < G(N−1) (2)

Otherwise, proceed to the step 4.
4) Increase the number of parallel TCP connections as

follows, and return to the step 2.

N ← α × N (3)

where α(> 1) is a control parameter.
Using the GSS algorithm [7], GridFTP-APT searches

the number of parallel TCP connections that maximizes
the GridFTP goodput within the bracket (l,m, r) during
succeeding chunk transfers.

GridFTP-APT searches the optimal number N of par-
allel TCP connections as follows.

1) Update the number N of parallel TCP connections:

N ←
{

l + (m − l)ν if m − l > r − m
m + (r − m)ν otherwise (4)

where ν is the golden ratio (= (3 −
√

5)/2) [7].
2) Transfer a chunk while measuring the GridFTP

goodput G(N).
3) If the following inequality is satisfied, proceed to

the step 4.

G(N) > G(m) (5)

If the above inequality is not satisfied, change the
bracket as follows and return to the step 1.

(l,m, r) ←
{

(l,m,N) if m < N
(N,m, r) otherwise (6)

4) Change the bracket as follows, and return to the step
1.

(l,m, r) ←
{

(m, N, r) if m < N
(l, N,m) otherwise (7)

B. Determining Chunk Size

GridFTP-APT predicts the GridFTP goodput of the
next chunk transfer, and dynamically configures the chunk
size so that the chunk transfer time becomes as fixed as
possible. Specifically, GridFTP-APT determines the chunk
size X as follows.

When searching the bracket, GridFTP-APT predicts
the GridFTP goodput of the next chunk transfer as
G(N−1) × G(N−1)/G(N−2) from the ratio of the past
chunk transfers, and determine the chunk size as

X ← G(N−1)
G(N−1)
G(N−2)

∆, (8)

where ∆ is a control parameter, which is the target value
of the chunk transfer time.

Note that, at the time of the first chunk transfer, since
the GridFTP goodput G(N−1) and G(N−2) are unknown,
the chunk size X is determined as

X ← N0 W

R
∆, (9)

where W is the TCP socket buffer size and R is the round-
trip time.

Note that, at the time of the second chunk transfer, the
GridFTP goodput G(N−2) is unknown. So the chunk size
X is determined as

X ← α G(N−1)∆. (10)

When GridFTP-APT searches the optimal number of
parallel TCP connections with the GSS algorithm, the
GridFTP goodput of the next chunk transfer is predicted
by the interpolation of two samples of the GridFTP
goodput in the bracket (l,m, r). Namely, the chunk size
is determined as follows.

X ←
{

((1 − ξ)G(l) + ξ G(m))∆ if N < m
((1 − ξ)G(m) + ξ G(r)) ∆ otherwise

ξ ←
{ N−l

m−l if N < m
N−m
r−m otherwise

(11)

APSITT2008/Copyright 2008 IEICE 07SB0208

round-trip time

GridFTP
goodput

GridFTP
goodput

 # of parallel
TCP connections

chunk size

 chunk size
determination module

GridFTP library globus-url-copy program

 round-trip time
measurement module

 goodput
measurement module parallelism optimization

 module

Fig. 2: Modular structure of GridFTP-APT implementa-
tion; we added four modules to the GridFTP library
and the globus-url-copy program.

(GridFTP client)
 GridFTP library

callback

RTT

(GridFTP server)
 GridFTP library

TYPE I

200 Type set to I.

MODE E

callback

200 Mode set to E.

ERET

150 Begining Transfer

callback

226 Transfer Complete.

 Time to
chunk transfer

Data Transfer

globus_ftp_control_
 send_command

globus_ftp_control_
 send_command

RTT

globus_ftp_control_
 send_command

(GridFTP client)
 GridFTP library

(GridFTP server)
 GridFTP library

Fig. 3: Measurement method of round-trip time and
GridFTP goodput; the round-trip time is measured
by measuring the duration between when
globus_ftp_control_send_command
is invoked, and when the callback function is
invoked using gettimeofday(2).

III. GRIDFTP-APT IMPLEMENTATION

A. Overview
We implemented GridFTP-APT based on the GridFTP

client included in the Globus Toolkit (globus-url-
copy program). The globus-url-copy program is a
GridFTP client that operates on the command line,
and is invoked as globus-url-copy [option]
srcURL dstURL where srcURL is a source URL
and dstURL is a destination URL. For example, to
copy a file /foo/bar from a GridFTP server host
to a temporary directory, globus-url-copy is invoked
as globus-url-copy gsiftp://host/foo/bar
file:///tmp/bar

With our GridFTP-APT implementation, a user can
specify control parameters (i.e., the initial number of paral-
lel TCP connections N0, the multiplicative increase factor
of parallel TCP connections α , and the target value of
chunk transfer time ∆) of GridFTP-APT with command-
line options. GridFTP-APT is enabled by default, but it
can be disabled by specifying -noapt option.

B. Modular Structure
To implement GridFTP-APT, we added four modules

(i.e., round-trip time measurement module, goodput mea-
surement module, chunk size determination module, and
parallelism optimization module) to the globus-url-copy
program and the GridFTP library (Fig. 2).

The round-trip time measurement module measures
the average round-trip time between a GridFTP server

and client. This module measures the response time of
GridFTP commands transfered on a control channel, and
calculates the average round-trip time using an exponential
weighted moving average.

By modifying the GridFTP library included in the
Globus Toolkit, we implemented the round-trip time
measurement module. globus_ftp_control_send_
command is a function for sending the GridFTP com-
mand. After calling this function, a callback function is
invoked when the response of the GridFTP command is
received. This module measures the round-trip time by
measuring the duration between when globus_ftp_
control_send_command is invoked, and when the
callback function is invoked using gettimeofday(2)
(Fig. 3).

The goodput measurement module measures the good-
put at every chunk transfer. This module calculates
GridFTP goodput from the chunk size and time required
to transfer the chunk.

By modifying the GridFTP library included in the
Globus Toolkit, we implemented the goodput measurement
module. A GridFTP client measures the duration between
when the GridFTP client sends ERET command or ESTO
command (i.e, when globus_ftp_control_send_
command function is invoked) , and when the chunk
transfer is completed (i.e., when the callback function is
invoked) using gettimeofday(2) (Fig. 3).

The parallelism optimization module updates the num-
ber of parallel TCP connections according to the GridFTP-
APT algorithm so that the GridFTP goodput is maximized.
Specifically, this module determines the number of parallel
TCP connections used for the next chunk transfer using
Eqs. (1), (3) and (4).

By modifying the globus-url-copy program included in
Globus Toolkit, we implemented the parallelism optimiza-
tion module. The parallelism optimization module is au-
tomatically invoked from globus_l_guc_transfer_
files function in the globus-url-copy program at the
beginning of every chunk transfer.

The chunk size determination module calculates the
chunk size for the next chunk transfer so that the chunk
transfer time becomes as fixed as possible. Specifically,
this module calculates the next chunk size using Eqs. (8)–
(11).

By modifying the globus-url-copy program included
in the Globus Toolkit, we implemented the chunk size
determination module. The chunk size determination mod-
ule is automatically invoked from globus_l_guc_
transfer_files function in the globus-url-copy pro-
gram at the beginning of every chunk transfer.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

Figure 4 shows the network configuration used for all
experiments. In this network, a GridFTP server and client
are connected via two Ethernet switches and a PC router.
The PC router is a network emulator [8] for imitating
change in the bandwidth and delay of the bottleneck link.
Since the bandwidth of all links is 1 [Gbit/s], a network
emulator is the bottleneck. A computer for generating the

APSITT2008/Copyright 2008 IEICE 07SB0208

chunk

switching
 hub

PC router
switching
 hub

UDP traffic

1[Gbit/s]
 1[ms]

1[Gbit/s]
 1[ms]

bottleneck link

dummynet

sending
 host

sending
 host

UDP sender

GridFTP server

UDP receiver

receiving
 host

receiving
 host

GridFTP client

file

Fig. 4: Network configuration used in experiments; the PC
router is a network emulator for imitating change
in the bandwidth and delay of the bottleneck link.

TABLE I
PARAMETER CONFIGURATION USED IN EXPERIMENTS

Bandwidth of network emulator 1 [Gbit/s]
Delay of network emulator 10 [ms]
Buffer size of router 500 [packet]
Queue discipline of router DropTail
TCP socket buffer size 64 [Kbyte]
TCP packet size 1,500 [byte]
Initial number of parallel TCP connections N0 4
Multiplicative increase factor α 2
Target value of chunk transfer time ∆ 3 [s]
File size transferred 50 [Gbyte]

UDP traffic at a fixed rate as background traffic is also
used.

We used the same computers with an Intel Xeon 3.06
[GHz] processor and 2 [Gbyte] memory for the GridFTP
server, the GridFTP client and the network emulator. For
the GridFTP server and the GridFTP client, we used De-
bian GNU/Linux (kernel version 2.6.8) and Globus Toolkit
4.0.3. We used FreeBSD 6.1 and dummynet 1.3.14.1
for the network emulator. Table I shows the parameter
configuration used in experiments. Unless explicitly stated,
parameters shown in Tab. I are used in the following
experiments.

B. Evolution of GridFTP Goodput

First, we investigate whether GridFTP operates effec-
tively in realistic network configurations. The evolution of
GridFTP goodput with GridFTP-APT is shown in Fig. 5.
For comparison purposes, GridFTP goodput in steady state
when fixing the number of parallel TCP connections at 1,
4, 8, 16, 32 and 64 are also plotted in the figure. One can
find that the optimal number of parallel TCP connections
seems to exist between 16–64 from the GridFTP good-
put with the fixed number of parallel TCP connections.
Moreover, this figure shows that the number of parallel
TCP connections is optimized at approximately 40 [s],
and the GridFTP goodput converges to 900 [Mbit/s]. The
evolution of the number of parallel TCP connections in
this scenario is shown in Fig. 6. This figure shows that
the number of parallel TCP connections of GridFTP-APT
converges to 32 at approximately 40 [s]. This agrees
with the result in Fig. 5 where the optimal number of
parallel TCP connections exists between 16–64. From

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100

G
ri
d

F
T

P
 g

o
o

d
p

u
t

[M
b

it
/s

]

Time [s]

GridFTP-APT
N=1
N=4
N=8

N=16
N=32
N=64

Fig. 5: Evolution of GridFTP goodput; the number of
parallel TCP connections is optimized at approxi-
mately 40 [s], and the GridFTP goodput converges
to 900 [Mbit/s].

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100N
u

m
b

e
r

o
f

p
a

ra
lle

l
T

C
P

 c
o

n
n

e
c
ti
o

n
s

Time [s]

Fig. 6: Evolution of the number of parallel TCP connec-
tions; the number of parallel TCP connections of
GridFTP-APT converges to 32 at approximately
40 [s].

these observations, we find that GridFTP-APT optimizes
the number of parallel TCP connections at approximately
40 [s], and utilizes the network resource quite effectively.

C. Effect of Bottleneck Link Bandwidth

To investigate the effect of the bottleneck link band-
width on GridFTP goodput, we performed experiments
by changing the bandwidth of the network emulator.
Figures 7 and 8 show the GridFTP goodput and the
number of parallel TCP connections when the bandwidth
of the network emulator is changed as 100–1000 [Mbit/s].
We conducted five experiments and measured the average
and 95% confidence interval of GridFTP goodput and the
number of TCP connections. For comparison purposes,
GridFTP goodput in steady state when fixing the number
of parallel TCP connections at 4,8 and 16 are also plotted
in the Fig. 7.

Figure 7 shows that GridFTP-APT utilizes the network

APSITT2008/Copyright 2008 IEICE 07SB0208

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 200 300 400 500 600 700 800 900 1000

G
ri
d

F
T

P
 g

o
o

d
p

u
t

[M
b

it
/s

]

Link bandwidth [Mbit/s]

GridFTP-APT
N=4
N=8

N=16

Fig. 7: Bottleneck link bandwidth vs. GridFTP goodput;
GridFTP-APT utilizes the network resource quite
effectively regardless of the bottleneck link band-
width.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r

o
f

T
C

P
 c

o
n

n
e

c
ti
o

n
s

Link bandwidth [Mbit/s]

Fig. 8: Bottleneck link bandwidth vs. the optimal number
of parallel TCP connections; the optimal number of
parallel TCP connections increases as the network
bandwidth becomes large.

resource quite effectively regardless of the bottleneck
link bandwidth. Moreover, Fig. 8 shows that the optimal
number of parallel TCP connections increases as the
network bandwidth becomes large. This can be explained
as follows. The bandwidth delay product increases as the
network bandwidth becomes large. Therefore, the number
of parallel TCP connections required for fully utilizing the
network resources increases.

D. Effect of Propagation Delay

To investigate the effect of the propagation delay of
the bottleneck link on GridFTP goodput, we performed
experiments by changing the delay of the network emu-
lator. Figures 9 and 10 show the GridFTP goodput and
the number of parallel TCP connections when the delay
of the network emulator is changed as 10–100 [ms]. For
comparison purposes, GridFTP goodput in steady state
when fixing the number of parallel TCP connections at

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100

G
ri
d

F
T

P
 g

o
o

d
p

u
t

[M
b

it
/s

]

Link delay [ms]

GridFTP-APT
N=4
N=8

N=16
N=32

Fig. 9: Bottleneck link delay vs. GridFTP goodput;
GridFTP-APT utilizes the network resource quite
effectively when the delay of the network emulator
is less than 80 [ms].

 0

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100N
u

m
b

e
r

o
f

p
a

ra
lle

 T
C

P
 c

o
n

n
e

c
ti
o

n
s

Link delay [ms]

Fig. 10: Bottleneck link delay vs. the optimal number
of parallel TCP connections; GridFTP-APT can
optimize the number of parallel TCP connections
regardless of the delay of the network emulator.

4, 8, 16 and 32 are also plotted in Fig. 9.
Figure 9 shows that GridFTP-APT utilizes the network

resource quite effectively when the delay of the network
emulator is less than 80 [ms]. When the delay of the
network emulator exceeds 80 [ms], the GridFTP goodput
is slightly degraded. This is because the default value of
the control parameter ∆ is small. If the control parameter
is configured according to the delay of a network, the
GridFTP goodput can be improved. Figure 10 shows
that GridFTP-APT can optimize the number of parallel
TCP connections regardless of the delay of the network
emulator.

E. Effect of Background Traffic

In realistic network configurations, the bottleneck link
might be shared by many users. We therefore investigate
the effect of background traffic on the performance of
GridFTP-APT. Figure 11 show the GridFTP goodput when

APSITT2008/Copyright 2008 IEICE 07SB0208

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50

G
ri
d

F
T

P
 g

o
o

d
p

u
t

[M
b

it
/s

]

Amount of background traffic [%]

GridFTP-APT
N=4
N=8

N=16

Fig. 11: Amount of background traffic vs. GridFTP good-
put; GridFTP-APT utilizes the network resource
quite effectively regardless of the amount of back-
ground traffic.

the transmission rate of background traffic is changed as
10–50 % of the bottleneck link bandwidth. For comparison
purposes, GridFTP goodput in steady state when fixing the
number of parallel TCP connections at 4, 8 and 16 are also
plotted in the figure. This figure shows that GridFTP-APT
utilizes the network resource quite effectively regardless
of the amount of background traffic.

F. Fairness among Multiple GridFTP Sessions

The bottleneck link might be shared by multiple
GridFTP sessions. In this case, it is important that GridFTP
sessions can fairly share the bottleneck link bandwidth. For
investigating fairness among multiple GridFTP sessions,
we measured the evolutions of GridFTP throughputs of
multiple GridFTP sessions (Fig. 12). Four GridFTP ses-
sions are activated every 100 [s]. Figure 12 shows that
the fairness among GridFTP sessions is not realized when
there exist more than two GridFTP sessions. This is an in-
trinsic problem of parallel TCP connections; i.e., the more
TCP connections are established, the more bandwidth is
gained. Namely, this result suggests that when parallel data
transfer is widely used by many users, GridFTP requires
some arbitration mechanism for fair bandwidth allocation
to multiple GridFTP sessions.

V. CONCLUSION

In this paper, we have explained our implementation of
GridFTP-APT based on the GridFTP client included in the
GlobusToolkit, which was a de facto standard middleware
of Grid computing. We have also investigated the effective-
ness of GridFTP-APT in realistic network environments
through several experiments using our GridFTP-APT im-
plementation and a network emulator. Consequently, we
have demonstrated the effectiveness of GridFTP-APT in
various network environments.

As future work, it is of great value to further enhance the
GridFTP-APT algorithm. For instance, we are currently
working on shortening the convergence time of the number
of parallel TCP connections. As shown in Section VI, our

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

G
ri
d

F
T

P
 t

h
ro

u
g

h
p

u
t

[M
b

it
/s

]

Time [s]

GridFTP session 1
GridFTP session 2
GridFTP session 3
GridFTP session 4

Fig. 12: Evolution of GridFTP goodput with four GridFTP
sessions; the fairness among GridFTP sessions
is not realized when there exist more than two
GridFTP sessions.

GridFTP-APT implementation takes approximately 40 [s]
for optimizing the number of parallel TCP connections.
We believe such convergence time is acceptable for prac-
tical purposes since GridFTP is generally used for large
data transfers. However, if the convergence time is further
shortened, GridFTP-APT can also be applied to small
data transfers, which must be beneficial to various Grid
applications.

VI. ACKNOWLEDGMENTS

We would like to thank Prof. Masayuki Murata for
his insightful comments. This work is supported by the
NAREGI (National Research Grid Initiative) Project from
the Ministry of Education, Culture, Sports, Science and
Technology, Japan.

REFERENCES

[1] W. Allcock et al., “GridFTP: Protocol extensions to FTP for the
Grid,” GGF Document Series GFD.20, Apr. 2003, also available as
http://www.ggf.org/document/GFD.20.pdf.

[2] I. Mandrichenko, W. Allcock, and T. Perelmutov, “GridFTP v2
protocol description,” GGF Document Series GFD.47, May 2005,
also available as http://www.ggf.org/document/GFD.47.pdf.

[3] T. Ito, H. Ohsaki, and M. Imase, “On parameter tuning of data trans-
fer protocol GridFTP in wide-area Grid computing,” in Proceedings
of Second International Workshop on Networks for Grid Applications
(GridNets 2005), Oct. 2005, pp. 415–421.

[4] T. J. Hacker, B. D. Athey, and B. Noble, “The end-to-end perfor-
mance effects of parallel TCP sockets on a lossy wide-area network,”
in Proceedings of the 16th IEEE-CS/ACM International Parallel and
Distributed Processing Symposium (IPDPS), Apr. 2002, pp. 434–
443.

[5] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSockets: The case
for application-level network striping for data intensive applications
using high speed wide area networks,” in Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, Nov. 2000, pp. 4–10.

[6] T. Ito, H. Ohsaki, and M. Imase, “GridFTP-APT: Automatic par-
allelism tuning mechanism for data transfer protocol GridFTP,”
in Proceedings of 6th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid2006), May 2006, pp. 454–461.

[7] W. H.Press, W. H.Vetterling, S. A.Teukolsky, and B. P.Flannery,
Numerical Recipes in C second edition. Cambridge University
Press Cambridge, May 1993.

[8] L. Rizzo, “Dummynet: a simple approach to the evaluation
of network protocols,” ACM Computer Communications Review,
vol. 27, no. 1, pp. 31–41, Jan. 1997. [Online]. Available:
http://citeseer.ist.psu.edu/rizzo97dummynet.html

